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Abstract: Machine learning operations (MLOps) are widely adopted in various real-world machine learning (ML)
systems. To ensure ML model performance in such systems, it is crucial to minimize the influence of insufficient data
and concept drift. One simple and effective solution is to update models with newly added data. In MLOps, after
updating a model, accuracy scores are usually used to validate the model. However, it is hard to obtain detailed in-
formation regarding the causes of performance changes. We therefore propose a method for understanding ML model
updates by using a feature attribution method called Shapley additive explanations (SHAP), which explains the output
of a ML model by assigning an importance value called a SHAP value to each feature. We calculate SHAP values
using models before and after updates to investigate changes in SHAP values. By analyzing the extent of changes, we
can identify the slight changes in models due to updates and the data related to the changes.
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1. Introduction
Machine learning (ML) has been applied to many systems to

solve real-world problems, including computer vision and cyber-
security. Such ML-based systems adopt machine learning opera-
tions (MLOps) to automate and monitor the process of ML-based
systems, from development to deployment and operation [1]. In
operation, ML models might not achieve the expected classifica-
tion performance. For example, when training data is insufficient
or biased, classification performance will be lower in operation
than in development [2]. Also, classification performance gradu-
ally degrades when statistical characteristics of data change over
time [3], a phenomenon called concept drift [4]. In such situ-
ations, adding new data to the training dataset and updating the
model can effectively improve classification performance of mod-
els.

After the update, the new model is validated using validation
data in terms of accuracy or other aspects of classification per-
formance [5]. Once the model is successfully validated, it can
be deployed in real-world tasks. At validation, it is difficult to
obtain information other than accuracy values. Although evaluat-
ing accuracy effectively confirms expected classification perfor-
mance in real-world operation, we cannot obtain detailed infor-
mation such as why performance improved or slight changes in
the model affecting predictions for a small amount of validation
data. Such information is beneficial in terms of MLOps because
we can improve data collection efficiency based on types of insuf-
ficient data, and we can prevent unexpected predictions caused by
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slight changes in the model.
To obtain detailed information about model updates, we pro-

pose a method for identifying samples whose feature attributions
in predictions have significantly changed after the updates. Fea-
ture attributions represent the extent to which features contribute
to predictions. When a model is retrained using training dataset
updated by adding new data, it may find an important feature
that was overlooked before the update. The attributions of such
features change significantly. In other words, by analyzing sig-
nificant changes in feature attributions, we can identify model
changes in detail. In the proposed method, increasing rates of
feature attributions are calculated by comparing attributions be-
fore and after the update. As feature attributions, we use Shap-
ley additive explanation (SHAP) values [6], which have a desired
property called consistency. Consistency allows for quantitative
comparisons of feature attributions between different models.

In our experiments, we use Android application dataset, con-
taining 11,649 benign and 1,430 malicious samples, and build
models for detecting malicious samples. We evaluate the ef-
fectiveness of the proposed method by analyzing model changes
while gradually adding new data to training dataset. The exper-
imental results show that most changes were caused by adding
malicious samples. The proposed method also identifies slight
model changes that could not be identified based on the area un-
der the curve (AUC). Moreover, we conduct a case study to show
that information on identified slight changes is beneficial in terms
of MLOps in order to confirm that changes have no negative ef-
fect on malware detection.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces related work and the SHAP concept. Section 3
presents the proposed method. Section 4 shows the experimental
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setups and results. Finally, Sections 5 and 6 provide a discussion
and our conclusions.

2. Related Work
We propose a method for analyzing model changes to confirm

that the performance has improved after updates. Before present-
ing our method, in this section we introduce some other methods
for evaluating the appropriateness of models. We also introduce a
method for determining features that contribute to classification.

2.1 Evaluation Methods
2.1.1 Model Evaluation Metric

For evaluating the classification performance of ML models,
there are several common metrics, such as accuracy, precision,
recall, F-measure, true positive rate (TPR) and false positive rate
(FPR). Those are used to calculate a value indicating the model
performance. In binary classification distinguishing between pos-
itive and negative classes, samples are divided into 4 different
categories based on their predicted and true classes: true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN). TPs and TNs are samples correctly predicted as positive
and negative, respectively. FPs and FNs are samples incorrectly
predicted as positive and negative, respectively. In malware de-
tection, positive and negative samples refer to malicious and be-
nign ones, respectively. The FPs are benign samples which are
incorrectly predicted as malicious.

The accuracy simply computes the ratio of correct prediction
number to the total sample number: T P+T N

T P+T N+FP+FN . The precision
is the ratio of correct positive prediction number to total positive
prediction number: T P

T P+FP . The recall (also known as the TPR)
is the ratio of correct positive prediction number to total positive
sample number: T P

T P+FN . The FPR is the ratio of incorrect positive
prediction number to total negative sample number: FP

FP+T N . The
F-measure (or F1-score) is the harmonic mean of precision and
recall:

2 × precision × recall
precision + recall

,

.
The model performance can also be shown in receiver operat-

ing characteristic (ROC) curves. ROC curves have the true and
false positive rates as vertical and horizontal axes, respectively.
ROC curves and the area under the curve (AUC) are commonly
used to evaluate the ML model performance in cybersecurity.

Besides those metrics, there are also some criteria to evalu-
ate the model in terms of other perspectives. To avoid overfit-
ting, two well-known criteria, the Akaike information criterion
(AIC) [7] and the Bayesian information criterion (BIC) [8], are
usually used. They are defined as

AIC = −2 ln(L) + 2K, (1)

BIC = −2 ln(L) + K ln(n), (2)

where K is the number of learnable parameters in the model, L
is the maximum likelihood of the model, and n is the number of
samples.
2.1.2 Cross-validation

Cross-validation evaluates ML models by dividing a dataset

into several subsets. To estimate the model’s classification per-
formance, one subset is used for validation and the others are
used for training. In k-fold cross-validation, a dataset D is ran-
domly split into k mutually exclusive subsets D1, D2, ..., Dk. The
model is then trained and tested over k rounds. In each round
i ϵ {1, 2, ..., k}, training is performed on subset D \ Di and testing
on subset Di. In validation, evaluation metrics such as accuracy
and AUC score is usually used to estimate classification perfor-
mance. To reduce variability, the validation results are combined
or averaged over all rounds to give a final estimate of classifica-
tion performance. In stratified cross-validation, subsets are strat-
ified so that they contain approximately the same proportions of
labels as the original dataset.

Although those evaluation methods can compute indicators re-
flecting model performance, they cannot provide sufficient details
of model updates.

2.2 Feature Attribution Methods
To explain predictions by ML models, importance values are

typically attributed to each feature to show its impact on predic-
tions. The importance values of features can be output by some
popular ML packages such as scikit-learn [9], where permuta-
tion importance are frequently used. Permutation importance ran-
domly permutes the values of a feature in the test dataset and ob-
serves change in error. If a feature is important, then permuting it
should largely increase model error [10].

Another method for interpreting ML models is partial depen-
dence plots (PDPs) [11]. A PDP can show how a feature affects
model predictions by the relation between the target prediction
and feature (e.g., linear, monotonic, or more complex). However,
a PDP can compute two features at most, and it assumes those
features are not correlated with other features. It is thus unreal-
istic to use PDP for models trained on data containing numerous
features.

Another popular approach called local interpretable model-
agnostic explanations (LIME) [12] explains a given prediction
by learning a model around that prediction. By computing the
feature importance values of a single prediction, we can easily
analyze what made the classifier output that prediction. Instead
of explaining the whole model, LIME explains only a single sam-
ple’s prediction result. However, LIME still uses permutation to
compute feature importance values, making LIME an inconsis-
tent method.

Although these methods are meant to provide insight into how
features affect model predictions, the feature attribution meth-
ods described above are all inconsistent, meaning that when the
model has changed and a feature impact on the model’s out-
put has increased, the importance of that feature can actually
be lower. Inconsistency makes comparison of attribution values
across models meaningless because it implies that a feature with
a large attribution value might be less important than another fea-
ture with a smaller attribution.

2.3 SHAP
The inconsistency of methods in Section 2.2 makes it mean-

ingless to compare feature attributions across models, which
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Fig. 1 SHAP values explain model output as a sum of the attributions of
each feature.

means we need a consistent method to analyze feature attribution
changes in different models.

SHAP [6] is a method that explains individual predictions
based on Shapley values from game theory. The Shapley value
method is represented as an additive feature attribution method
(demonstrated in Fig. 1) with a linear explanation model g, de-
scribed as

g(z) = ϕ0 +

M∑
i=1

ϕizi, (3)

where z ϵ (0, 1)M , M is the number of input features, and ϕi ϵ R.
The zi is a binary decision variable to represent a feature being
observed or unknown, and ϕi are feature attribution values.

Currently, SHAP is the only consistent and locally accurate in-
dividualized feature attribution method. According to Ref. [6],
SHAP has three desirable properties: local accuracy, missing-
ness, and consistency. Local accuracy means the sum of feature
attributions equals the output of the model we want to explain.
Missingness means that missing features are attributed no impor-
tance, i.e., 0. Consistency means that the attribution assigned to a
feature will not be decreased when we change a model so that the
feature have a larger impact on the model. Consistency enables
comparison of attribution values across models.

When explaining a model f , SHAP assigns ϕi values to each
feature [10] as

ϕi =
∑

S⊆A\{i}

|S |!(M − |S | − 1)!
M!

[ fx(S ∪ {i}) − fx(S )], (4)

where fx(S ) = f (hx(z)) = E
[
f (x)|xS

]
, E
[
f (x)|xS

]
is the expected

value of a function conditioned on a subset S of the input fea-
tures, S is the set of nonzero indexes in z, and A is the set of all
input features. The hx maps the relation between the pattern of
binary features z and the input vector space.

Since SHAP is the only consistent, locally accurate method for
measuring missingness, there is a strong motivation to use SHAP
values for feature attribution. However, there are two practical
problems remaining to be solved, namely,
( 1 ) efficiently estimating E

[
f (x)|xS

]
, and

( 2 ) the exponential complexity of Eq. 4.
When estimating the predictions of tree models, Lundberg and

Lee [10] designed a fast SHAP value estimation algorithm spe-
cific to trees and tree ensembles. This algorithm runs in polyno-
mial time instead of exponential time, reducing the computational
complexity of exact SHAP value computations for trees and tree
ensembles.

3. Proposed Method
When updating a ML model for real-world deployment, de-

tailed information about model updates is beneficial for prevent-

Fig. 2 The SHAP values of features change after updates.

ing unexpected predictions in production. To obtain detailed in-
formation, we identify samples whose feature attributions signif-
icantly changed after the update. Since SHAP is a consistent
attribution method, meaning that SHAP values are invariant re-
gardless of models, we use SHAP values to measure the attribu-
tion changes of features across different models. We investigate
changes in models in detail by analyzing changes in the SHAP
values of features.

Figure 2 shows an example of the changes in SHAP values be-
fore and after an update regarding predictions of the same sample.
A SHAP value is assigned to each feature to show how important
it is. A high SHAP value means that the corresponding feature
has large effect on the prediction, and a SHAP value close to 0
means that the corresponding feature has almost no effect on the
prediction. SHAP values for Features 2 and 4 decreased to near
0, and Feature 1’s SHAP value increase greatly from a value near
0 after the update, indicating that the model significantly changed
regarding these features. On the other hand, the SHAP values
of Feature 3 has no significant change, meaning the model did
not change regarding this feature. By analyzing features whose
SHAP values have significantly changed, we can infer the cause
of model updates and its effect on classification performance.

Our method defines an increasing rate that indicates the sig-
nificance of changes in feature attributions after a model update.
Specifically, we compute SHAP values for different models, then
calculate the significance of the increase in each feature’s SHAP
value due to the update. This increasing rate also shows whether
changes in SHAP values are increasing or decreasing. As shown
in Fig. 2, Feature 1 has a significant increase, while Feature 2 and
4 have significant decrease after update. Unlike these features,
Feature 3’s increasing rate is close to 0 because its SHAP value
has no significant change after the update.

The following describes our definition of the increasing rate.
Let D1 be the dataset on which the model was trained before the
update and let D′ be the data added for the update. After updat-
ing, the model will be trained on dataset D2 = D1 ∩ D′. Then,
let the model as trained on D1 and D2 be f1 and f2, respectively.
When predicting a label for data x with model fm, we denote the
SHAP value of the i-th feature xi as vmxi .

We define the increasing rate Ixi of a feature xi as the ratio of
the SHAP value’s increase to the smallest absolute SHAP value.
Let v1xi be the SHAP value of feature xi in the old model, and
let v2xi be the SHAP value of feature xi in the new model. The
increasing rate is large only if the absolute value of one SHAP
value (v1xi or v2xi ) is large and the other is close to zero. In other
words, if the absolute values of both SHAP values are either large
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Table 1 Model training data sizes

Malicious Benign
Model 1 101 816
Model 2 151 1,224
Model 3 201 1,631
Model 4 251 2,039
Model 5 301 2,447
Model 6 351 2,854
Model 7 401 3,262
Model 8 451 3,670
Model 9 501 4,077

or small, the increasing rate is small. We add constant terms c1

and c2 to make the increasing rate small when both SHAP values
are close to zero. The increasing rate for feature xi is defined as

Ixi =
v2xi − v1xi + c1

min(|v1xi |, |v2xi |) + c2
,

where c2 > 0,

c1 =

 c2, when v2xi − v1xi ≥ 0,
−c2, when v2xi − v1xi < 0.

(5)

In this paper, we set the constant term c2 = 0.01.
The SHAP values of a sample x is an array of size N, where N

is the number of features:

vmx = [vmx1 , vmx2 , ..., vmxi , ..., vmxN ].

The increasing rate of a sample is also an array of size N:

Ix = [Ix1 , Ix2 , ..., Ixi , ..., IxN ].

The increasing rate indicates the significance of a change in fea-
ture attributions due to a model update. Based on the increasing
rate, we identify samples whose feature attributions have signif-
icantly changed. To that end, we use a threshold pair (k1, k2) to
select the high increasing rate and feature number, where k1 and
k2 are mutually independent. We identify a change in feature at-
tributions of a sample x as significant by counting the number of
increasing rates whose absolute values exceed k1 and where the
number of increasing rates is larger than k2. By analyzing fea-
tures whose absolute values of increasing rates are larger than k1,
we can infer changes in the model caused by the update.

To investigate types of insufficient data, we count the number
of significantly changed samples for each type of change. Specif-
ically, we count the number of samples NI+ and NI− in the shared
dataset D1, focusing on increasing rates I > k1 and I < −k1, re-
spectively. The more samples the dataset D1 contains, the larger
NI+ and NI− will be. We thus use ratios NI+/|D1| and NI−/|D1| to
investigate the extent to which a certain data type is insufficient.

4. Experiments
In this section, we use Android applications to evaluate the ef-

fectiveness of the proposed method. After introducing the dataset
and machine learning models used in the experimental setup, we
show the experimental results when models are updated by grad-
ually increasing the training data size.

4.1 Experimental Setup
Dataset. We use samples from AndroZoo [13] to conduct the
experiments. AndroZoo is a collection of Android applications

Fig. 3 ROC curves for models 1–9.

Table 2 AUC scores for models 1–9

AUC
Model 1 0.9389
Model 2 0.9588
Model 3 0.9607
Model 4 0.9664
Model 5 0.9695
Model 6 0.9709
Model 7 0.9740
Model 8 0.9735
Model 9 0.9745

from several sources, including the official Google Play app mar-
ket and VirusShare. It contains over ten million Android appli-
cation package (APK) files. Each file has been analyzed by over
70 antivirus software packages, providing knowledge of which
are malware. We selected files not detected as malware by any
antivirus software for use as benign samples. For malicious sam-
ples, we selected files that were detected as malware by at least
four antivirus software packages.

We collected over 1,000 samples per month from AndroZoo
between 2016 and 2018. In total, we gathered 61,724 benign
samples and 11,160 malicious samples. Our experiments use ap-
plications collected from July to December 2017 to consider the
stability of antivirus detection and concept drift. We use applica-
tions collected over one year ago because Miller et al. [14] em-
pirically showed that antivirus detections become stable after ap-
proximately one year. We minimize the influence of concept drift
by using applications collected within six months. We followed
Ref. [2] when adjusting the ratio of malicious samples to benign
ones. Specifically, we set the percentage of malicious samples
to 10% and benign samples to 90% in the dataset. The result-
ing dataset therefore contains 11,649 benign samples and 1,430
malicious samples.

We split the dataset into training and test datasets. We conduct
experiments assuming models are updated by gradually increas-
ing the number of samples in the training dataset. For this exper-
iment, we prepare nine training datasets with different sizes, as
shown in Table 1. The smallest dataset contains 10% of the ran-
domly selected samples from the adjusted dataset. We prepare the
other datasets by repeatedly adding 5% of the remaining adjusted
dataset by random sampling.
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During the experiments, we noticed that classification perfor-
mance no longer increases after 50% of the adjusted dataset is
used, so we decided to stop increasing the dataset size after 4,077
benign and 501 malicious samples. For the test dataset, we ran-
domly select 30% of the adjusted dataset (3,495 benign and 429
malicious samples). Note that the training and test datasets do
not overlap. The test dataset is used to evaluate the classification
performance of the models, with all models being evaluated using
this test dataset in the experiments.

Feature. Before building models, we need to extract features
from APK files in order to apply machine learning. To extract
features in our experiments, we use Drebin [15], a lightweight
method for detecting malicious APK files based on broad static
analyses. Features are extracted from the manifest and the dis-
assembled dex code of the APK file. From these, Drebin col-
lects discriminative strings such as permissions, API calls, and
network addresses. In particular, Drebin extracts following eight
sets of strings: four from manifests and four from dex code.
( 1 ) Hardware components
( 2 ) Requested permissions
( 3 ) App components
( 4 ) Filtered intents
( 5 ) Restricted API calls
( 6 ) Used permissions
( 7 ) Suspicious API calls
( 8 ) Network addresses

The features are embedded into an N-dimensional vector
space, where each element is either 0 or 1: Each element corre-
sponds to a string, with 1 representing the presence of the string,
and 0 representing its absence. The extracted feature vector x is
denoted as

x =
(
... 0 1 ... 0 1 ...

)
.

The feature vector can be used as input for a machine learning
model.

Classification Models. Our experiments use random forest [16],
a method that is well known for its excellent classification per-
formance and can be applied to many tasks, including malware
detection. Random forest is an ensemble of decision trees. Each
decision tree is built using a randomly sampled subset of data and
features. By creating an ensemble of many decision trees, random
forest achieves high classification performance even when the di-
mensions of feature vectors exceed the dataset size. Furthermore,
the SHAP package [17] associated to Ref. [10] provides a high-
speed algorithm called TreeExplainer for tree ensemble methods,
including random forest.

Hyperparameter Optimization. We use the datasets shown in
Table 1 to train the different models. For each random forest
model, we conduct a grid search to determine the best combi-
nation of parameters among the following candidates:
( 1 ) Number of trees: 10, 100, 200, 300, 400.
( 2 ) Maximum depth of each tree: 10, 100, 300, 500.
( 3 ) Ratio of features used for each tree: 0.02, 0.05, 0.07, 0.1,

0.2.
( 4 ) Minimum number of samples required at a leaf node: 5, 7,

10, 20.
Each candidate combination is validated using five-fold cross val-
idation. Specifically, we calculate an average of five AUC scores
for each combination and select the best combination in terms of
average AUC score as the result of the grid search.

Baseline. We use AUC scores as the baseline and evaluate
whether we can obtain more information with the proposed
method than with AUC scores. AUC scores are frequently used
to evaluate classification performance of ML models for malware
detection. AUC scores can evaluate classification performance by
considering true positive rates at various false positive rates.

4.2 Experimental Results
We present the results of three experiments. We first intro-

duce the results of a preliminary experiment for determining the
threshold pair in the proposed method. We then compare the pro-
posed method and the baseline when analyzing model updates
using the nine models. This section concludes with a case study
showing how outputs of the proposed method can be used for fur-
ther analysis of model updates.

Preliminary Experiment. To determine an appropriate thresh-
old pair for the proposed method, we conduct experiments using
different threshold pairs and compare the results. Specifically,
we calculate the increasing rate using Eq. (5), and count sam-
ples containing features with high increasing rate based on differ-
ent threshold pairs. Each threshold pair contains a threshold k1,
which defines the minimum absolute value of the increasing rate,
and another threshold k2, which defines the minimum number of
features whose absolute values of increasing rates is larger than
k1. In other words, samples selected based on a threshold pair
(k1, k2) are those containing at least k2 features whose increasing
rates are larger than k1 or lower than −k1. We count such samples
for each sign of increasing rate (I ≥ 0 for increase and I < 0 for
decrease) and each label (malicious and benign). In this exper-
iment, an increase in SHAP values (I > 0) means samples are
more likely to be detected as malicious, whereas a decrease in
SHAP values (I < 0) means samples are more likely to be classi-
fied as benign.

Table 3 shows the results when using different threshold pairs.
When the thresholds are too high (e.g., k1 = 5 or k2 ≥ 3), most
sample numbers are 0, which are nonsensical results. When the
threshold k1 is too low (e.g., k1 = 2), the sample numbers are al-
ways high, regardless of model updates because increasing rates
are larger than 2 even when changes in SHAP values are small.
These two are nonsensical results. The threshold pair is appro-
priate if the proposed method selects only samples whose SHAP
values significantly changes without ignoring most samples. We
therefore chose the threshold pair (3, 1) when conducting the fol-
lowing experiments.

Comparison with Baseline. As baseline results, Table 2 and
Fig. 3 show the receiver operating characteristic (ROC) curves
and AUC scores for each model. Table 2 show that the AUC
scores gradually increased and the amount of increase was rela-
tively large for models 1–4 compared with models 4–9. This is
because the effect of added data decreased as the training dataset
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Table 3 Number of samples whose increasing rates significantly changed based on different threshold
pairs

Threshold pair (2,1) (2,3) (2,5) (3,1) (3,3) (3,5) (4,1) (4,3) (4,5) (5,1) (5,3) (5,5)

Models 1&2 I ≥ 0 66/115 12/14 5/1 22/38 5/2 0/0 10/14 1/2 0/0 7/6 1/2 0/0
I < 0 75/146 31/9 4/4 56/36 1/2 0/2 24/16 0/2 0/0 6/5 0/2 0/0

Models 2&3 I ≥ 0 66/77 30/1 8/0 44/10 5/0 5/0 25/3 5/0 5/0 12/1 0/0 0/0
I < 0 97/96 1/0 0/0 12/19 0/0 0/0 1/2 0/0 0/0 1/0 0/0 0/0

Models 3&4 I ≥ 0 60/115 6/16 2/6 29/46 0/7 0/1 8/17 0/5 0/0 1/10 0/5 0/0
I < 0 24/48 0/6 0/6 0/8 0/5 0/4 0/7 0/5 0/0 0/6 0/5 0/0

Models 4&5 I ≥ 0 25/33 4/1 0/0 9/16 0/1 0/0 7/11 0/0 0/0 7/3 0/0 0/0
I < 0 8/36 0/1 0/0 0/4 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0

Models 5&6 I ≥ 0 17/61 1/10 0/3 3/26 0/2 0/0 0/8 0/0 0/0 0/1 0/0 0/0
I < 0 18/22 0/2 0/0 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Models 6&7 I ≥ 0 25/74 4/3 0/2 6/29 4/2 0/0 5/14 4/0 0/0 4/8 4/0 0/0
I < 0 64/61 1/0 0/0 25/8 0/0 0/0 0/3 0/0 0/0 0/3 0/0 0/0

Models 7&8 I ≥ 0 49/61 1/9 0/0 0/19 0/7 0/0 0/12 0/7 0/0 0/8 0/0 0/0
I < 0 78/46 0/1 0/0 1/9 0/0 0/0 0/4 0/0 0/0 0/1 0/0 0/0

Models 8&9 I ≥ 0 21/52 0/3 0/0 3/10 0/0 0/0 0/4 0/0 0/0 0/0 0/0 0/0
I < 0 4/12 0/0 0/0 0/1 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0

The number before / represents the number of malicious samples, and the number after / represents the number of benign samples.

Table 4 Number of samples and ratio with threshold pair (3,1)

Malicious Benign Ratio

Models 1 & 2 I ≥ 0 22 38 0.065
I < 0 56 36 0.100

Models 2 & 3 I ≥ 0 44 10 0.039
I < 0 12 19 0.023

Models 3 & 4 I ≥ 0 29 46 0.041
I < 0 0 8 0.004

Models 4 & 5 I ≥ 0 9 16 0.011
I < 0 0 4 0.002

Models 5 & 6 I ≥ 0 3 26 0.011
I < 0 0 2 0.001

Models 6 & 7 I ≥ 0 6 29 0.011
I < 0 25 8 0.010

Models 7 & 8 I ≥ 0 0 19 0.005
I < 0 1 9 0.003

Models 8 & 9 I ≥ 0 3 10 0.003
I < 0 0 1 0.000

size increased. Fig. 3 also shows that ROC curves of models 4–9
were close without depending on false positive rates. In contrast,
the ROC curves of models 1–4 were not close when the false pos-
itive rate is larger than 0.01. These results are useful for knowing
the extent to which adding new data improves classification per-
formance. However, we cannot know why classification perfor-
mance improved.

Table 4 shows results under the proposed method when using
the threshold pair (3, 1). In that table, the number of samples
selected by the proposed method drastically decreased after up-
dating model 5. This result is the same as in the baseline. In other
words, the effect of adding data decreased as the training dataset
size increased, but the proposed method more clearly shows the
change in that effect.

Table 4 also shows ratios of selected samples to the number of
training dataset samples for each sign of increasing rate (I ≥ 0
and I < 0). An increase in SHAP values (I > 0), meaning sam-
ples are more likely to be detected as malicious, is caused by
adding malicious data, and a decrease in SHAP values (I < 0),
meaning samples are more likely to be classified as benign, is
caused by adding benign data. Consequently, a high ratio for
positive increasing rate indicates that adding malicious data im-
proves classification performance, whereas a high ratio for neg-
ative increasing rate indicates that adding benign data improves

performance. Referring to Table 4, the classification performance
of models 4–6 is improved mainly after adding malicious data,
whereas the performance of models 2, 3, and 7 improved after
adding both malicious and benign data. Adding data did not im-
prove the classification performance of models 8 and 9. The pro-
posed method can thus identify why classification performance
improved.

Moreover, the proposed method can identify features
that contribute to the performance improvement by updates,
namely, those with increasing rates exceeding the thresh-
old k1. The following describes some important features
of multiple samples in Table 5. For reference, we give at
least three features in each update, although the total num-
ber of features was less than three for updates to models 6
and models 8–9. These features and their increasing rates
demonstrate importance changes for classification. For exam-
ple, android.app.activitymanager:get running tasks

becomes important when adding benign data. If these fea-
tures are associated with a certain malware family, we can
obtain even more information about the dataset. For example,
android.media.ringtonemanager:set actual default

ringtone uri becomes important when adding samples of the
“tachi” family.

Case Study. Table 4 shows an interesting result regarding the
update between models 6 and 7: the ratio of negative increasing
rates is significantly larger than those for updates of models 3–6
and 7–9. This indicates an unusual change between models 6 and
7, so we conduct a more detailed analysis as a case study.

We first focus on the most distinct samples, namely, malicious
samples with negative increasing rate. Analyzing their features,
we find that 24 of the 25 samples contain both or one of the fol-
lowing features:
( 1 ) android.permission.vibrate
( 2 ) android.permission:write external storage
The update significantly changed the SHAP values of these fea-
tures, the former decreasing from 0.2134 to 0.0377 and the latter
decreasing from 0.0924 to 0.0171. These changes show that fea-
tures become much less important for classification after the up-
date between models 6 and 7. Further analysis focusing on mal-
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Table 5 Features with increasing rates exceeding the threshold k1 = 3

Feature I Family Number

Models 1 & 2
android.app.activitymanager:get running tasks I < 0 * 23
android.media.ringtonemanager:set actual default ringtone uri I < 0 tachi 13
android.nfc.tech:NDE formatable.format I < 0 * 13

Models 2 & 3
android.nfc.tech:Ndef formatable.format I > 0 * 20
android.media.ringtonemanager:set actual default ringtone uri I > 0 tachi 17
android.permission:change wifi state I < 0 piom 5

Models 3 & 4
android.locationmanager:get provider I > 0 * 18
android.permission:send sms I > 0 * 6
servicelist:com.stub.stub05.stub02 I > 0 jiagu 5

Models 4 & 5
servicelist:com.stub.stub02.stub04 I > 0 jiagu 6
android.launcher.permission:read settings I > 0 * 2
servicelist:com.stub.stub01.stub01 I > 0 drtycow 1

Models 5 & 6 Ndef formatable.connect I > 0 * 2
android.provider.settings$system:put string I > 0 gappusin 1

Models 6 & 7
android.permission:write external storage I < 0 fakeapp 24
android.permission:vibrate I < 0 fakeapp 21
servicelist:com.stub.plugin.stub03 I > 0 jiagu 4

Models 7 & 8 android.telephony.telephonymanager:getline1number I < 0 * 1
Models 8 & 9 android.permission:read user dictionary I > 0 * 3
Feature: Features extracted from Android applications.
Number: Number of samples containing the feature.
Family: Family to which the samples belong.
*Sample cannot be associated with a certain family, or is associated with multiple families.

Fig. 4 ROC curves of the “fakeapp” family for models 1–9.

ware families showed that these features are associated with the
“fakeapp” family, which might become more difficult to detect by
these features. In other words, the update between models 6 and
7 might decrease true positive rates for the “fakeapp” family. We
therefore investigate ROC curves for the “fakeapp” family. Fig-
ure 4 shows that the ROC curve does not degrade after the update
between models 6 and 7. This analysis confirms that there is no
negative effect on classification performance by these features.

Next, we focus on malicious samples with positive increasing
rates. Four of the six samples contain the following features:
( 1 ) com.stub.plugin.stub03
( 2 ) com.stub.plugin.stub02
( 3 ) com.stub.plugin.stub01
SHAP values of all these features increased from 0.000 to at least
0.1383, indicating that they are not important for model 6 but be-
come important when detecting malicious samples for model 7.
Given that these features are associated with the “jiagu” family,
it may become easier to detect after the update between models 6
and 7. Figure 5 shows the ROC curves of the “jiagu” family. The
true positive rate for model 7 is much higher than that for model 6,
with false positive rates from 0.00 to 0.04. This analysis showed

Fig. 5 ROC curves of the “jiagu” family for models 1–9.

that classification performance for the “jiagu” family is improved
by the three features above after the update between models 6 and
7, despite the change in AUC being small (see Table 2).

As this case study showed, the proposed method is useful to
find unusual changes in models, identify their cause, and estimate
their effects even if the change only slightly affects AUC scores.

5. Discussion
Application of the Proposed Method. Our method can be ap-
plied to machine learning tasks other than malware detection. The
SHAP method provides algorithms for estimating SHAP values
for any model, allowing application to any ML model regardless
of dataset or model. For example, our method can be applied to
suspicious URL detection [18], malicious website detection [19],
and malware family classification [20]. In multiclass classifica-
tions, we can identify changes in important features by analyzing
feature attribution changes while focusing on each class.

Dataset Bias. Our method measures the extent of change in mod-
els by counting samples in which important classification features
have changed. Therefore, when the dataset is biased toward just
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a few families, leaving other families only a few samples, it is
difficult to count many samples of nonbiased families even when
their features change significantly. However, as demonstrated in
Section 4, we can still manually analyze the details of changed
features to determine their influence on families containing few
samples.

Future Work. The experiments described above performed only
malware detection for Android applications using a random forest
classification. Although the increasing rate can theoretically be
computed for any model, we still need to perform further exper-
iments on different models and datasets to confirm some details,
such as how to best choose the threshold pair.

We currently analyze model changes mainly by counting the
number of samples, but in practice the extent of value change
can also be useful to understand model updates. In future work,
we will try to obtain more detailed model information through
changes in feature attributions.

6. Conclusion
ML methods have been widely applied to many tasks. In prac-

tical use, it is necessary to regularly update the model to main-
tain its classification performance. AUC and accuracy are gen-
erally used to validate models to confirm their performance after
updates. However, it is difficult to gain sufficiently detailed in-
formation for understanding model updates, such as what causes
performance improvements and the slight changes in models that
affect predictions for a small amount of data.

We therefore proposed a method for determining samples in
which the features important for classification have significant
changes. By analyzing those samples and features, we can know
more about why performance improved or how an update influ-
ences a particular malware family. For the feature contribution
computation, we used a consistent importance value called the
SHAP value, due to property that SHAP values are comparable
across different models. Our proposed method calculates increas-
ing rates of SHAP values after updates to reflect changes in fea-
ture importance. We conducted experiments demonstrating that
the causes of performance changes by model updates can be iden-
tified with the proposed method. Through a case study, we man-
ually analyzed the model update based on the output of the pro-
posed method, finding that it can distinguish slight changes for a
particular malware family. Currently, we have only analyzed the
results by selecting high increasing rate features, without study-
ing specific rate values. In future work, we will gather more in-
formation and conduct qualitative analyses from the results of our
method.
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