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Abstract

In recent years, the time variation of the Internet traffic has become large due to the growth

of Internet services such as streaming and clouds. A backbone network has to accommodate such

traffic without congestion. So far, backbone networks have addressed this problem by preparing

the redundant link capacity so as to accommodate not only the average traffic but also traffic

surge. However, this approach requires higher cost according as the average and variance of traffic

increase. Moreover, this approach causes the waste of energy consumption due to the poor utility

of network resources. Hence, a method to accommodate traffic without congestion on the network

with limited resources is required to reduce such costs and power consumption caused by the

over provisioning. Traffic Engineering (TE) is one approach to accommodating the time-varying

traffic with limited resources. In the TE, a control server periodically observes traffic in a network

and dynamically changes the routes so as to minimize the network congestion. However, TE

using only the observed traffic mitigates only the observed congestion and cannot avoid the future

congestion until the next control cycle. TE combined with the traffic prediction is one approach to

solving such problem. In this approach, the control server periodically predicts the time variation

in traffic, and then calculates the routes based on the predicted traffic. Naturally, the predicted

traffic includes the prediction errors, which may cause the congestion. In this thesis, we propose

a prediction-based TE which is robust to prediction errors. To achieve the robust control, our

method uses the idea of Model Predictive Control (MPC), which is a method of process control

based on the prediction of the dynamics of the system. In our method, the routes are calculated so

that the congestion in the future time slots is avoided without sudden route changes based on the

predicted traffic. Then, we apply the calculated routes for the next time slot, and observe traffic.

By using the newly observed traffic, we predict the future traffic and calculate the routes again.
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By continuing these steps, the impact of the prediction errors are mitigated because the traffic

prediction is corrected in each time slot. Through the simulation using the actual traffic trace of a

backbone network, we demonstrate that our method can accommodate all traffic variation under a

certain target link capacity.
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1 Introduction

In recent years, the time variation of the Internet traffic has become large due to the growth of

Internet services such as streaming and clouds. A backbone network has to accommodate such

traffic without congestion.

So far, backbone network has addressed this problem by preparing the redundant link capacity

so as to accommodate not only the average traffic but also traffic surge [1, 2]. However, this

approach requires higher cost according as the average and variance of traffic increase. Moreover,

this approach causes waste of energy consumption due to the poor utility of network resources;

this approach prepares more than double the capacity required to accommodate the actual traffic.

Hence, a method to accommodate traffic without congestion on the network with limited resources

is required to reduce such costs and power consumption caused by the over provisioning.

Many TE methods have addressed the problem of accommodating time-varying traffic by us-

ing the limited resources effectively [3–6]. In the TE methods, a control server periodically ob-

serves the traffic in a network and dynamically changes the routes so as to accommodate the

observed traffic. These methods, however, set the routes only for the observed traffic. Therefore,

the configured routes does not suit the actual traffic when significant traffic change occurs, but the

routes are not changed until the next control cycle.

Distributed TE methods [3, 4] control the routes with a short interval by using only locally

observed traffic information. However the frequent route change causes the routing oscillations.

The routing oscillations degrade the throughput of TCP sessions; the routing oscillations cause

the packet reordering by delivering the packets of one TCP session via different paths, which

reduces the window size of the TCP session. The routing oscillation also causes too frequent

changes in RTT, which decrease the throughput of delay-based TCP [7]. Hence, the method to

avoid congestions without significant route changes is required.

The TE with traffic prediction is one approach to solving such problem. In this method, the

routes are calculated based on the predicted future traffic. The prediction methods of the network

traffic have been studied for various time scales, the short-term variation such as milliseconds or

seconds order [8–11], the daily variation [12, 13], and the long-term variation such as monthly

or yearly variation [14, 15]. The traffic prediction for the TE, which considers both of the daily

variation and short-term variation, has also been proposed [16]. However, any prediction method
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makes an error. If the routes are calculated with such incorrect traffic information, the routes are

no longer appropriate for the actual traffic, and congestion may occur. Therefore, the TE with

traffic prediction should be robust to such prediction errors.

In this thesis, we propose a TE method which uses the traffic prediction without impact of

prediction errors. In our method, we apply the Model Predictive Control (MPC) [17] to the TE,

which has been recently studied as a method of system control based on the prediction of the

dynamics of the system. In the MPC, a controller inputs the parameters to the system so as to

hold the output of the system close to a target value. The MPC controller predicts the output of

the system, which reflects the changes in the input values, and calculates the optimal input values

for future time slots. The input values only for the next time slot is implemented. Then, the MPC

controller observes the output and corrects the prediction using the output value as a feedback.

After the correction of the prediction, the MPC controller recalculates the input value for the

next time slot with corrected prediction. By continuing the above steps, the MPC controller can

calculate the accurate input for the future time slots even if the prediction errors occur. Moreover,

the MPC controller avoids the overreaction to the temporal prediction error by avoiding the drastic

changes in the input value. In this thesis, applying the MPC to the TE, we propose the TE method

which follows the predicted traffic variation and is robust to the prediction errors.

The rest of this thesis is organized as follows. Section 2 surveys the TE and traffic predic-

tion. Section 3 introduces the TE method using the predicted traffic. Section 4 describes our TE

method to which we apply the MPC. Section 5 presents an evaluation of our TE method. Section

6 mentions the conclusion.
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2 Related Work

2.1 Traffic Engineering

The traffic engineering (TE) have been studied as an approach to accommodating changing traffic

by dynamically changing routes. The process of TE is composed of following three steps; (1) the

traffic rates are observed at the network devices, (2) the routes are calculated so as to accommodate

the current traffic, and (3) the calculated routes are implemented to the actual network. These steps

are periodically repeated to follow the traffic changes. The details of the above steps are discussed

below.

The traffic rates are observed in fixed intervals (e.g. one second, one minute, or one hour)

called time slot. Generally, the traffic rates of aggregated flows are observed instead of observing

the traffic rate of each flow, because there are a huge number of flows; In [3, 5], a number of

flows are aggregated as Origin-Destination (OD) flow which traverses from the ingress Point-of-

Presence (PoP) router to the egress PoP router. Similar to these existing work, we also aggregate

the flows as OD flows in this thesis. Hereafter, we denote the traffic rate of OD flow i at the k-th

time slot as xi(k) and the vector x(k) = t(x1(k), · · · , xq(k)) represents the traffic rates of all OD

flows at the k-th time slot where q is the number of OD flows. The traffic rates of the OD flows

are monitored by the routers or traffic monitors attached to the routers. Then, the information can

be collected using the Netflow protocol and so on.

After the traffic information is collected, the routes are calculated based on the observed traffic

rates. The routes are defined by the fraction of traffic of each OD flow sent to each path. We denote

the fraction as a matrix R(k) whose (i, j)-element Ri,j(k) indicates the fraction of traffic on the

OD flow j which traverses the available path i. Assuming the traffic pattern does not change

between current and next time slots, the expected traffic rates on links are calculated as

ŷ(t+ 1) = G ·R(t+ 1) · x(t) (1)

where ŷ(t+1) = t(ŷ1(t+1), . . . , ŷl(t+1)) is the vector whose component ŷi(t+1) indicates the

expected traffic rate of link i at the next time slot, l is the number of links, andG is a matrix whose

(i, j)-element Gi,j is 1 if the available path j traverses the link i, otherwise Gi,j is 0. The TE is a

process to calculate routes R(t+ 1) so as to minimize the cost function f(ŷ(t+ 1)) of the traffic

rates on the links such as congestion, delay, or packet loss rate. Therefore the TE is formalized as
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the following optimization problem.

minimize : f(ŷ(t+ 1)) (2)

subject to : ŷ(t+ 1) = G ·R(t+ 1) · x(t) (3)

The most used cost function is the maximum link utilization [3,5] to accommodate the unexpected

traffic surge.

Finally the calculated routes are implemented. One of the approach to implementing the routes

is setting the MPLS Label Switched Paths (LSPs) between the OD pair along the calculated routes

[4,18]. In this approach, the control server calculate the set of the links used by each LSP and split

ratio of OD flow among LSPs based on R(t+ 1). Then, the calculated routes are implemented by

establishing the LSPs.

In the existing TE method, the control server calculates the next routes R(t+ 1) based on the

latest observed traffic rates x(t). These routes R(t + 1), however, are not exactly suitable to the

actual traffic rates at the time slot t+1 because the traffic rates of the time slot t+1 differs from the

that of time slot t. Under the drastically changing traffic, the difference between the x(t+ 1) and

x(t) becomes large and the calculated routes based on x(t) may no longer accommodate the actual

traffic at the (t+ 1)-th time slot. To quickly respond to such traffic, distributed TE methods [3, 4]

are proposed. In such methods, the routes are frequently calculated using only the local traffic

information. However, the frequent and significant route change causes the degradation of the

throughput of TCP sessions because of the packet reordering or the frequent changes in RTT.

Therefore, we propose a TE method with traffic prediction which directly sets routes fitting to the

traffic at the future time slots without the significant route changes.

2.2 Traffic Prediction

The predictability of the Internet traffic has been received a significant interest from many domain

such as capacity planning, anomaly detection, admission control, and traffic engineering. Traffic

prediction is a process that analyze the dynamics of the observed traffic and predicts the volume

of traffic to arrive in the future. First, a model of traffic dynamics is constructed from the observed

traffic rates. The model represents the time evolution such as x(k + 1) = F (x(1), · · · , x(k))

where F is a model of traffic dynamics. Then, the future traffic rates are predicted in accordance

with the model. If we observe the traffic rate until the time slot t, the traffic rate at the time slot
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t+ 1 is calculated as

x̂(t+ 1) = F (x(1), · · · , x(t)) (4)

where x̂(t+1) is the predicted traffic at the time slot t+1. The traffic rates after the time slot t+2

is iteratively calculated by using the former predicted values instead of the observation values as

x̂(t+ k) = F (x(1), · · · , x(t), x̂(t+ 1), · · · , x̂(t+ k − 1)).

To predict the network traffic, many prediction models have been proposed such as ARMA,

ARIMA [8, 14], ARCH [11], GARCH [9], Neural Network [12, 13] and so on. Using these pre-

diction models, traffic prediction has been studied targeting various time scales; small time scale

such as milliseconds, seconds or minutes order [8–11], daily scale [12, 13], and larger time scale

such as monthly or yearly variation [14, 15].

Among the various time scales, the daily traffic variation is important for TE, which changes

the routes so as to follow hourly traffic change in a day. It is well known that network traffic has

periodical pattern with 24-hour cycle, and the daily traffic variation is estimated by considering

the periodicity. In [16], a traffic prediction method for the TE was proposed. This method aimed

at avoiding the underprediction, which causes the lack of resources and congestion when the pre-

dicted traffic rates are used as an input of the TE. In this method, the observed traffic variation is

separated into daily variation and short-term variation. The future daily variation is predicted from

the observed daily variation. Additionally, the range of the short-term variation is calculated from

the observed short-term variation. Then, by summing the predicted daily variation and the range

of the short-term variation, the predicted traffic rates are obtained.

The prediction targeting the smaller time scale is also useful for the TE which tries to follow

the fine-grained traffic change. Zhou et al. proposed a prediction method that can predict the

traffic rate of the next time slot accurately, even when the length of each slot is from 100ms to

10s [9]. Balaji et al. proposed a one-step ahead prediction targeting the minutes order interval

such as fifteen minutes [11] for being applied to dynamic bandwidth provisioning.

All prediction methods including mentioned above, however, cannot avoid prediction errors.

For example, the predicted value cannot follow the sudden traffic change which has unknown

variation pattern. Additionally, the prediction error becomes large as the target of prediction is

far ahead. Therefore, the TE with traffic prediction should be able to absorb the influence of

prediction error.

9



3 Traffic Engineering with Traffic Prediction

The traffic prediction is useful for the TE to solve the delay of route change due to the gap between

the actual traffic and observed traffic. Figure 1 shows an overview of the TE with traffic prediction.

Opposed to the existing observation-based TE, the observed traffic rates is not directly used to

calculate the routes. Using the observed traffic, the future traffic rates are calculated by the traffic

prediction process. After the traffic prediction, the routes are calculated based on the results of

prediction instead of the observed traffic. This process is periodically repeated to follow the change

in tendency of traffic.

Using the traffic prediction, the traffic rates on the links can also be predicted; the predicted

traffic rates on links in the case of routes R(t+ 1) is calculated as

ŷ(t+ 1) = R(t+ 1)x̂(t+ 1). (5)

In the TE with traffic prediction, the routes are calculated by considering the cost function of

ŷ(t+ 1).

The TE with traffic prediction configures the routes so as to avoid future congestion without

frequent route changes. One approach of the TE with traffic prediction is to configure the fixed

routes R that minimizes the cost function during the future time slots from t + 1 to t + h. The

optimal fixed routes R is obtained by solving the following optimization problem.

minimize : f(ŷ(t+ 1), · · · , ŷ(t+ h)) (6)

subject to : ŷ(k) = Rx̂(k), k = t+ 1, · · · , t+ h (7)

The predicted traffic, however, includes the prediction errors. The prediction errors become

large as the target time slot of prediction is far ahead from the lastly observed time slot. The routes

calculated based on the predicted traffic may not be suitable to the actual traffic because of the

prediction errors; congestion may occur if the actual traffic rates on the link is much larger than

the predicted traffic rates. Thus, the TE method that is robust to prediction errors is required.
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Figure 1: Overview of traffic engineering with traffic prediction
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4 Traffic Engineering using Model Predictive Control

4.1 Model Predictive Control

The MPC is a method of system control based on the prediction of the dynamics of the system,

which has been studied in recent years. In the MPC, a controller set the parameter (input) so as to

keep the performance (output) of the system close to the target designed by an operator. Opposed

to the traditional system control, the MPC controller predicts the changes in the output value to cal-

culate the inputs for the future time slots [t+1, t+h] called predictive horizon where h is the length

of the predictive horizon. We describe the input and output at the k-th time slot as u(k) and y(k),

respectively. The MPC controller calculates the inputs for the predictive horizon [t+ 1, t+ h] so

as to keep y(k) close to ry(k) which is the target value. The inputs u(t+1), · · · , u(t+h) that keep

y(k) close to ry(k) are obtained by using the objective function J1 =
∑t+h

k=t+1 ∥y(k) − ry(k)∥2

where ∥ · ∥ represents the Euclidean norm;

(u(t+ 1), · · · , u(t+ h)) = arg min
(u(t+1),··· ,u(t+h))

J1. (8)

In order to solve the above optimization problem, the future outputs y(t+1), · · · , y(t+h) have

to be predicted when the inputs u(t+1), · · · , u(t+h) are given. The future output under the given

input is calculated by a system model which represents the system dynamics. In system control,

a system model is often represented by a mathematical formula called state space representation

described as:

z(k + 1) = ϕ(k, z(k), u(k)) (9)

y(k) = ψ(k, z(k), u(k)) (10)

where z(k) is the state of the system at k-th time slot, ϕ and ψ are the function which maps the

current state and input onto the next state and output, respectively.

Modeling the system by mathematical formula, however, may cause the modeling error such

as the function ϕ or ψ is different from the actual system dynamics; if the output is predicted

using the incorrect model, the result of prediction is different from the actual system output. This

prediction error becomes large especially when the prediction target becomes far ahead from the

last observation. Therefore, the MPC controller implement only the first one u(t + 1) of the

calculated inputs u(t + 1), · · · , u(t + h) for the predictive horizon. Then, the MPC controller
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observes the output and corrects the prediction using the output value as a feedback. After the

correction of the prediction, the MPC controller recalculates the input value for the next time slot

with corrected prediction.

In addition, the prediction errors may cause the significant change in the input value, which

makes the system unstable. Hence, the controller restricts the amount of change in the input in

order to absorb influence of the prediction error. We denote the amount of change in the input at

the time slot k as ∆u(k) = u(k) − u(k − 1) and the aggregated amount of change during the

predictive horizon as J2 =
∑t+h

k=t+1 ∥∆u(k)∥. Instead of the input values determined by Eq.(8),

the controller calculates the input values by the following optimization problem.

(u(t+ 1), · · · , u(t+ h)) = arg min
(u(t+1),··· ,u(t+h))

J1 + wJ2 (11)

where w is a parameter to balance the importance of the two objective functions J1 and J2.

4.2 Applying Model Predictive Control to Traffic Engineering

4.2.1 Traffic Engineering Model for Model Predictive Control

To achieve a prediction-based TE which is robust to prediction errors, we apply the MPC to TE.

Figure 2 shows an overview of our TE method to which the MPC is applied. We assume that a

control server collects all information of traffic and sets the routes. In the TE, the central control

server plays a role as the MPC controller, which inputs the routes R(k) and measures the outputs

of the network, the traffic rates on the links y(k). The control server periodically changes the

routes by repeating the following two steps. 1) the control server predicts the traffic rates of OD

flows for the target time slots based on the previously observed traffic rates. 2) the control server

calculates the routes based on the prediction so as to avoid congestion.

To avoid congestion, the central control server calculates the routes so as to hold the traffic

rates on links under target capacities denoted by ci. To achieve this, we introduce a cost function

called congestion level of path j. The congestion level is determined by the amount of traffic

which overshoots the target link capacities c = (c1, · · · , cl). We assume that (1) the congestion

on a link equally affects the paths which traverse the link, and (2) the congestion level on a path

is determined by the bottle neck link which is the most congested intermediate link on the path.

From the assumption (1), the overshooting traffic per path at link i is calculated by dividing the
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overshooting link traffic [yi(k)−ci]+ by the number of traversing paths nl. By the assumption (2),

the congestion level of the path j, ζ ′j(k) is determined by the maximum overshooting link traffic

over the path j. That is,

ζ ′j(k) = max
i∈j

[yi(k)− ci]
+/ni (12)

where [x]+ equals to x if the value of x is positive, otherwise [x]+ equals to 0. We define the

congestion level of the path j by scaling the value of ζ ′j(k) with the maximum link capacity as

ζj(k) = ζ ′j(k)/max
l
cl. (13)

4.2.2 Formulation of Optimization Problem

The control server computes the routes by considering the following two objective functions; J1 =∑t+h
k=t+1 ∥ζ(k)∥2 which indicates the summation of squares of the congestion level, and J2 =∑t+h
k=t+1 ∥∆R(k)∥2 which indicates the summation of squares of the amount of route changes.

This multi-objective optimization is conducted by minimizing the weighted sum (1−w)J1+wJ2

where 0 ≤ w ≤ 1 indicates the importance of the restriction on the route changes.

In our TE method, the control server solves the following optimization problem at each time

slot t:

minimize :

t+h∑
k=t+1

(
(1− w)∥ζ(k)∥2 + w∥∆R(k)∥2

)
(14)

subject to : ∀k, ∀p, nlζp(k) = max
l∈p

[ŷl(k)− cl]
+ /max cl (15)

∀k, ŷ(k) = G ·R(k) · x̂(k) (16)

∀k, ∀i, ∀j, Ri,j(k) ∈ [0, 1] (17)

∀k,
∑

i∈℘(j)

Ri,j(k) = 1 (18)

where the c, x̂(k), G, nl are given variables and ζ(k), R(k), ŷ(k) are variables to be optimized.

The Eq.(15) corresponds to the definition of the congestion level ζ(k). The Eq.(16) represents the

relation between the traffic rates of the OD flows and links. The Eqs.(17) and (18) mean that all

traffic on each OD flow is allocated to one of available paths.

Although all of the routesR(t+1), · · · , R(t+h) during the predictive horizon are obtained by

solving the above optimization problem, the control server implements only the next routes R(t+
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1). After the implementation of route change, the control server corrects the traffic prediction x̂(k)

using the newly observed traffic rate and recalculates the next routes by solving the optimization

problem again.

Though the above optimization problem Eqs.(14)–(18) includes the non-linear constraint Eq.(15),

it can be rewritten as a convex optimization problem introducing slack variables. The calculation

of [ŷl(k)− cl]
+ can be replaced by a linear constraint [ŷl(k)− cl]

+ = ŷl(k) − cl + Sl(k) where

Sl(k) ≥ 0 is a slack variable. In addition, the operation maxl∈p is translated by inequality con-

straints nlζp(k) ≥ maxl∈p [ŷl(k)− cl]
+ /max cl for all the link l in the path p. As a result, the

original optimization problem Eqs.(14)–(18) is rewritten as

minimize :

t+h∑
k=t+1

(∥ζ(k)∥+ w∥∆R(k)∥) (19)

subject to : ∀k, ∀p,∀l ∈ p, nlζp(k) ≥ αl(k)/max cl (20)

∀k, ∀l, αl(k) = ŷl(k)− cl(k) + Sl(k) (21)

∀k, ∀l, αl(k) ≥ 0 (22)

∀k, ∀l, Sl(k) ≥ 0 (23)

∀k, ŷ(k) = G ·R(k) · x̂(k) (24)

∀k, ∀i,∀j, Ri,j(k) ∈ [0, 1] (25)

∀k,
∑

i∈℘(j)

Ri,j(k) = 1 (26)

where αl(k) ≥ 0 represents the value of [ŷl(k)− cl]
+. The solution of this optimization problem

satisfies the original constraint Eq.(15) because the variables satisfy the inequality formulation

nlζp(k) ≥ maxl∈pαl(k)/max cl ≥ maxl∈p [ŷl(k)− cl]
+ /max cl and the equality is attained if

the ζp(k) is minimized.
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Figure 2: Overview of traffic engineering based on MPC
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5 Evaluation

5.1 Evaluation of Basic Behavior of MPC-based TE

In this subsection, we investigate the behavior of the MPC-based TE under the basic situation.

5.1.1 Simulation Environment

Network Topology We use the simple network topology shown in Figure 3. In this simple

network, there are only two OD flows from node 0 to node 1 and from node 4 to node 5. Each

OD flow has two available paths shown by the arrows in Fig. 3, the paths 0-1 and 0-2-3-1 for the

OD flow between node 1 and node 2 and the paths 4-5 and 4-2-3-5 for another OD flow. Due to

the overlap of a link between paths 0-2-3-1 and 4-2-3-5 the control server has to adjust the split

ratio of traffic among the paths. For example, if the traffic rates increase at the OD flow 0-1, more

traffic should be bypassed on the path 0-2-3-1 and traffic at OD flow 4-5 should not traverse the

path 4-2-3-5 so much to avoid the congestion.

Network Traffic We use artificial traffic shown in Figure 4. This artificial traffic includes traffic

increase and decrease, which causes the congestion unless the routes are appropriately changed.

Prediction Method In this evaluation, we use a simple prediction method detailed as follows.

First, we find a best-fit straight line lk = ak + b which minimizes the sum of squared distance

from the previous observed traffic rates xt−s, xt−s+1, · · · , xt(x ≥ 1) denoted as
∑s

k=0(xt−s+k −

lt−s+k)
2. Then, we obtain the future traffic rate as x̂t+k = lt+k. Though there are many more

sophisticated prediction methods, we use the above simple prediction with s = 1 to verify the

effect of correcting the prediction by the feedback from new observation, which is one of the main

effects of MPC.

Calculation of Routes To solve the optimization problem Eqs.(19)–(26), we use the CPLEX [19]

which is a solver of optimization problems. The optimization problem is a convex quadratic pro-

gramming problem which can be directly solved by using CPLEX. We run the CPLEX on a com-

puting machinery with four Intel Xeon Processors each of which has 10 Cores, and 30MB Cache.

Compared Methods
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Observation-based TE In the observation-based TE, the control server only uses the ob-

served traffic rates instead of the predicted traffic rates. By comparing the MPC-based TE with

this observation-based TE, we demonstrate the effect of considering the future traffic variation.

Zero-Buffer-Path-Flow (ZBPF) Model Retvari and Nemeth also applied the MPC to TE

based on Zero-Buffer-Path-Flow (ZBPF) model [20]. The ZBPF model, however, uses only the

observed traffic rate, and it does not use the predicted rate. In the ZBPF model, they assume that

no further traffic arrives within the predictive horizon. That is, the future traffic x̂i(k) is regarded

as zero. Hence, the dynamics of the amount of traffic to be delivered on a flow is described as

follows

xi(k) = xi(t)− τ

k−1∑
j=t

ui(j) (27)

where ui(j) is the amount of traffic rates to send on flow i at the j-th time slot.

The original TE method with ZBPF model described in [20] determines the traffic rates ui(j)

to send at each time slot so as to complete the transmission of traffic within the predictive horizon.

For comparison with our TE method described in Section 4, we implement the TE with ZBPF

model as adjusting the fraction of traffic R(k) so as to minimize the congestion level ζ(k).

5.1.2 Congestion Level

Figure 5 shows the sum of ζ ′i(k) for all paths which are the amounts of traffic exceeding the target

link capacity at each time slot. The label “MPC” represents the result of MPC-based TE with

length of predictive horizon set to 3. We use the label “prediction base” to represent the result of

MPC-based TE with w = 0, which performs as the simple prediction-based TE where the routes

are calculated simply based on the predicted traffic rates without restricting the route changes.

The label “observation base” and “ZBPF” means the result of the observation-based TE and the

TE with ZBPF model. Although the ZBPF model also has a parameter h to determine the length

of prediction horizon, we show only the result of h = 1 which was the best parameter for ZBPF

model in the simulation. The ZBPF model with h = 1 is eventually same as the observation-based

TE because the routes are calculated without considering the future traffic rates.

To clarify the effect of MPC, we compare the two cases of the weight for route change (w = 0

and w = 0.5). When the w is 0, the control server calculates the routes so as to simply minimize
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the congestion level for given traffic rate without restricting the amount of route change. Therefore,

the routes may be wrong when the predicted traffic has prediction errors. On the other hand, when

the w is 0.5, the control server determine the routes so as to minimize not only the congestion level

but also the amount of route change. In this case, the control server can change the routes avoiding

the effect of temporal prediction error.

In Fig.5(a), the congestion occurs at some time slots for all TE method when the w is 0.

However, the reasons why the congestion occur are different between the prediction-based TE

and the observation-based TE (or ZBPF). At time slots 11, 21 and 31, linear prediction makes

an error because the increasing or decreasing slope of traffic rates is changed at those points.

Due to these prediction errors, the prediction-based TE configures wrong routes and cause the

congestion. On the other hand, the observation-based TE and ZBPF set wrong routes when the

traffic rates increase or decrease because the routes based on previous traffic rates are no longer

suitable to the next traffic pattern.

By restricting the amount of route change, as shown in Fig.5(b), the MPC-based TE avoids the

congestion even when the prediction errors occur. This is because the MPC-based TE can absorb

the impact of the prediction errors by avoiding the large route change caused by wrong traffic

information. By contrast, the observation-based TE and ZBPF cause the heavier congestion than

the case of w = 0 because the large w slows the response to the traffic changes.

The above results indicates that the idea of MPC, which controls the input based on prediction

with absorbing the influence of prediction error, is effective for TE; the MPC-based TE avoids

future congestions, while the simple prediction based TE or observation-based TE cannot avoid

congestion due to prediction errors or traffic changes.

5.1.3 End-to-End Delay

By reducing the congestion level, the MPC-based TE provides lower-delay communication even

when the traffic rates are changing. To verify this effect, we also evaluate the End-to-End delay

when the MPC-based TE is conducted.

We calculates the link delay from the link utilization with approximating the packet processing

in the Internet by M/M/1 queuing model. According to the queuing theory, the link delay is

calculated as L̄
Cl−yl

+ pl where L̄ is an average packet length, pl is the propagation delay, and Cl

is the actual capacity of the link l. The delay of OD flow is weighted sum of the delays of all
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Figure 5: Amount of traffic exceeding the target link capacity in the case of simple network
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available paths
∑

p rpdp where rp is the fraction ratio of traffic over path p and dp is the delay of

the path which is the summation of delays on all links on the path. A large delay is caused by not

only the congestion but also the path length. Therefore, if most traffic traverse the long path, the

delay of OD flow becomes large even at the low congestion level.

Figures 6 and 7 show the average delay and maximum delay of all OD flows, respectively.

From these figures, the MPC-based TE reduces both average and maximum delay. This is because

the MPC-based TE keeps lower congestion level and similar path length to the observation-based

TE.

5.2 Evaluation of Congestion Level in Actual Network

From the above simulation result, we clarify that the MPC-based TE can reduce the congestion

level and End-to-End delay for simple situation in which only one link is shared by two OD flows.

In the actual network, however, the situation is more complex; some links are shared with some

OD flows. To clarify that the MPC-based TE is also effective for actual network, we evaluate the

performance on the topology of Internet2 using the actual traffic trace.

5.2.1 Simulation Environment

Network Topology In this subsection, we use an actual backbone network of Internet2 shown in

Figure 8. The link capacities of Internet2 are over provisioned so that the maximum link utilization

are lower than 20%. Hence, we set the target capacity of link to 15% of the actual link capacity in

our simulation.

Network Traffic We use the actual traffic trace [21]. These traffic data are collected by Netflow

protocol at each of the PoP routers. The sampling rate is one packet in every 100 packets, and

aggregated data are exported every five minutes. Sampling method has mainly two problems that

it causes sampling error and there may be unsampled flows. However, it is not critical problem

for our evaluation because we only needs the traffic rate of aggregated OD flow, which has a large

number of samples. We use four minutes’ worth of data by avoiding the file boundary by excluding

the start and end of thirty seconds of the Netflow data during 11/01/2011, 12:00 – 12:05 p.m.. The

traffic data is aggregated into the OD flows between PoP routers using the BGP information.

Using the start and end times and the total amount of traffic of each flow in the Netflow data, we
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obtain the traffic rate every second. The start and end times are recorded with the granularity of a

millisecond. If the start and end times of a flow are ts and te, the amount of traffic during a certain

period τ is calculated as

x =
θ

te − ts
τ (28)

by assuming that traffic arrives at a constant bit rate, where θ is the total amount of traffic of the

flow. The traffic amount at the time slot k corresponding to the actual time interval [tk, tk+1]

depends on the active time of the flow in the time slot, hence the τ is set to the active time as

τ =



tk+1 − ts (tk < ts ∧ tk+1 < te)

te − ts (tk < ts ∧ tk+1 ≥ te)

tk+1 − tk (tk > ts ∧ tk+1 < te)

te − tk (tk > ts ∧ tk+1 ≥ te)

0 (otherwise).

(29)

Finally, the traffic rate of an OD flow is obtained by summing the traffic amount for all flows in

the OD flow.

The calculated traffic rates are shown in Figure 9.

Prediction Method We use the same prediction method used in Section 5.1.

Calculation of Routes Similar to Section 5.1, we use the CPLEX [19] to calculate the routes. In

this evaluation, the optimization is finished within one second when h = 3 in the case of Internet2.

Compared method In addition to the observation-based TE, we also compare the MPC-based

TE with the following smoothed observation-based TE. The smoothed observation-based TE cal-

culates the next routes R(t + 1) using the smoothed value x̄(t) which reduces the noise of ob-

servation value x(t). We use an exponential moving average (EMA) for smoothing; if x̄i(t − 1)

is a previous smoothed value of the flow i, and we observe the current traffic rate xi(t), then we

update the smoothed value as x̄i(t) = ηxi(t) + (1 − η)x̄i(t − 1) where η represents the degree

of weighting decrease of historical data. By comparing the MPC-based TE with the smoothed

observation-based TE, we demonstrate that the advantages of the MPC-based TE is not due to
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smoothing the observed traffic rates though the traffic prediction obtains the average dynamics of

traffic and eliminates the short-term variation of traffic.

5.2.2 Results

Figure 10 shows the amount of traffic exceeding the target link capacity when the MPC-based

TE is conducted on the Internet2 topology with actual traffic trace. For comparison, we show

the results of the observation-based TE and smoothed observation-based TE. The label “TE with

smoothing” represents the result of smoothed observation-based TE.

In Fig.10, the same behavior of the MPC-based TE appears as the simple network. When the

weight of route changes w equals to 0, not only the observation-based TE but also the prediction-

based TE causes the congestion at some time slots. This is because the prediction errors sometimes

occur in respond to the change in slope of traffic rates. When w equals to 0.5, the MPC-based TE

keeps the traffic on the links under the given link capacities. Therefore, the MPC-based TE is also

effective for actual network situation.

By comparing the result of MPC-based TE with smoothed observation-based TE, we can dis-

tinguish the effect of smoothing and prediction. From Fig. 10, the TE simply using the smoothing

cannot avoid the congestion. This is because the smoothing amplifies the difference of traffic rates

between current time slot and next time slot, which slows the response to the traffic change.

5.3 Discussion on Parameter Setting

The MPC-based TE has some parameters such as weight for route change, length of predictive

horizon, and cycle length of control and prediction. We investigate effect of these parameters in

detail using the Internet2 topology with actual traffic trace.

5.3.1 Weight for Route Change

First, we examine the impact of w which is the weight of route change. In the above evaluation,

we show that w have an important role in changing the routes with predicted traffic; the TE is

sensitive to prediction error when w = 0 and robust to prediction error when w = 0.5. The value

of w, however, represents the sensitivity to not only the prediction error but also the changing

traffic. Hence, we may have to consider the trade-off between the robustness and sensitivity to set
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an appropriate value of w.

Figure11 shows the maximum amount of traffic exceeding the target link capacity for all time

slots when the MPC-based TE is conducted with various values of w. The y-axis is the amount of

exceeding traffic, and the x-axis is the value of w. The label h means that the MPC-based TE is

conducted with the predictive horizon length of h.

In Fig.11, the medium value ofw such asw=0.1–0.6 is appropriate for avoiding the congestion,

which achieves to balance the robustness and sensitivity. In addition, the achieved performance of

the MPC-based TE is not sensitive to w within the range of w=0.1–0.6.

5.3.2 Length of Predictive Horizon

Second, we investigate the impact of length of predictive horizon h. This parameter indicates how

long future the control server considers to calculate the routes. Using the large value of h, the

control server can take into account not only the next time slot but also further time slot to change

the routes gradually in advance of traffic changes. However, setting too large h may cause wrong

route changes because the prediction errors generally become large as the prediction target is far

ahead. In addition, the larger h becomes, the longer time the calculation of routes takes.

Figure 12 shows the maximum amount of traffic exceeding the target link capacity when the

MPC-based TE is conducted with various values of h, setting the value of w to 0.5. When the h

is larger than 27, the congestion level increases as h becomes large. This is because the influence

of prediction error becomes large as the predictive horizon becomes long. Too small values of

h = 1, 2 also cause the congestion because the control server does not consider the traffic change

in further future. The appropriate values of h to avoid the congestion are within the range of 3–26.

Hence, it is sufficient for the MPC-based TE to set the h to 3 or a bit large values.

5.3.3 Cycle Length of Control and Prediction

Finally, we discuss the cycle length of control and prediction. In the above simulation, we set

the control and prediction cycle length so that they equal observation cycle length (one second).

However, the frequent control makes routes unstable, and it may degrade the throughput of the

TCP sessions. Additionally, the frequent control imposes a limitation of calculation time on the

control server. On the other hand, the control server cannot follow the traffic change, when the
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control and prediction cycle is large. Therefore, it is important to clarify which length of cycle is

appropriate to avoid the congestion and a large calculation time.

Figure 13 shows the maximum amount of traffic exceeding the target link capacity for all

time slots when the MPC-based TE is conducted with various lengths of control and prediction.

We set the x-axis to the length of predictive horizon as similar to Fig.12 because the effect of

predictive horizon will change with the change of cycle length, The label “prediction cycle = i”

means that the prediction cycle length is set to i seconds. To change the cycle length, we change

the length of the time slot of control and prediction cycle. If the control cycle is m seconds,

the control server calculates the routes using the average rate of predicted traffic in each time slot,

x̂i
′(k) = 1

m

∑km−1
j=(k−1)m x̂i(j). Similarly, traffic prediction is conducted with the aggregated traffic

rates for the length of time slots. Though the period of control and prediction is changed, the time

grain of traffic change is not changed. That is, traffic rates change in every one second.

From Fig.13, frequent control and prediction are better for avoiding the congestion. This is

simply because the routes are quickly changed corresponding to the traffic change by the frequent

control and prediction. However, there is a difference between the impact of control cycle and

prediction cycle. In Fig.13(a), the congestion can be avoided even when the control cycle is

10 seconds. On the other hand, the congestion cannot be avoided when the prediction cycle is

10 seconds. This is because predicting with fine granularity can follow the changing traffic and

the control server can accommodate traffic even with fixed routes considering the fluctuation of

traffic. Therefore, we can set the length of control cycle to bit large while the prediction have to

be frequently conducted.
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6 Conclusion

In this thesis, we proposed a TE method which uses the predicted traffic rates instead of the

observed value. According to the prediction-based control theory, our TE method calculates the

routes with correcting the prediction and avoiding the large route change to absorb the impact

of prediction errors. Through the simulation with the actual traffic trace of a backbone network,

we demonstrated that our TE method can avoid the congestion while the observation-based TE

cannot avoid the congestion. In addition, we discussed the parameter setting such as the weight for

route change w, the length of predictive horizon h, and the cycle length of control and prediction.

Then, we clarify the following characteristics about the parameter setting. First, the weight of

route change has the role to absorb the effect of prediction errors by balancing the sensitivity and

robustness to traffic change. We find that the performance is not sensitive to w in a certain range,

and we can select a safe value of w from the range. Second, our TE method works well when h is

3 or bit more. Finally, changing routes in even 10 seconds intervals is sufficient to respond to the

change in traffic rate at every one second while the prediction has to be conducted in one second.

Our future work includes the clarification of the robustness of the MPC-based TE through

theoretical analyses of the MPC-based TE.
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