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Preface

Recent advances in the optical networks like dense wavelength division multiplexing (DWDM),

which combines and transmits multiple signals simultaneously at different wavelengths on

the same fiber, allow achieving ultra high data transmission rates in optical networks. While

optical transmission rates were getting faster and faster, electronic components in routers

like electronic RAM could not pace due to high costs and electronic limitations and became

a bottleneck. Therefore, it became necessary to do some basic operations like buffering and

switching in the optical domain without converting packets to electronic domain. However,

the lack of high capacity optical RAM makes it difficult to buffer optical packets in optical

packet switched (OPS) networks. According to a rule-of-thumb, buffer size of each output

link of a router must be B = RTT × BW , where RTT is the average round trip time of

flows and BW is the bandwidth of output link, in order to achieve high utilization with

TCP flows. However it requires a huge memory size due to high speed of optical links, so

it is currently unfeasible.

Currently, the only available solution that can be used for buffering in the optical domain

is using FDLs. Contended packets are switched to FDLs in order to be delayed. However,

FDLs have important limitations. First of all, FDLs require very long fiber lines that cause

signal attenuation inside the routers. There can be a limited number of FDLs in a router

due to space considerations, so they can provide a small amount of buffering. Second, FDLs

provide only a fixed amount of delay. FDL buffering is possible with today’s technology,

so many researchers consider FDL buffers to resolve contentions in optical networks. On

the other hand, optical RAM is under research and it may be available in the near future.
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Optical RAM solves the problems of FDLs like lack of real O(1) reading operation, signal

attenuation and bulkiness. However, Optical RAM is not expected to have a large capacity,

soon. Therefore, decreasing the huge buffer requirements of OPS networks is necessary in

order to make use of optical buffering.

In this thesis, we propose methods for minimizing the optical buffer size requirements

of optical networks. We evaluate buffer requirements in case of both FDL and optical

RAM buffering. We show that real O(1) reading capability of optical RAM allows further

decreasing the buffer size requirements when compared with FDL buffering.

A well-known technique for decreasing buffer requirements is applying pacing, so first

we evaluate some paced transmission protocols and compare their performance in small-

buffered networks. Simulation results show that all non-paced TCP and XCP variants

perform poorly. We show that even pacing alone is not enough for XCP with default pa-

rameters to make suitable for small buffered networks, so we introduce a new parameter

set for XCP. Simulation results show that buffer requirements on routers are greatly re-

duced by paced XCP with suitable parameter settings, while keeping the high fairness, fast

convergence, and high utilization.

Based on these results, we design and propose a new XCP framework called Rate-based

Paced XCP specially designed for small buffered OPS networks. We evaluate the FDL re-

quirements on a meshed network with multiple-hop paths and show how FDL requirements

change with slot size, utilization, FDL granularity, scheduling and packet size distribution.

As a next step, we propose new switch architectures specially designed for Rate-based

Paced XCP for further decreasing the buffer requirements and switch costs. We investigate

and compare input and output buffered optical switch architectures. We show how the FDL

requirements of different switch architectures change with FDL granularity and packet size

distribution by using a star topology.

We next focus on optical RAM. We replace FDL buffering with optical RAM and eval-

uate the buffer size requirements in our architecture. We show that proposed architecture

has low buffer requirements with optical RAM due to advantage of O(1) reading operation

of optical RAM when compared with FDLs.
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Using XCP framework may increase the implementation cost of the proposed small

buffer architecture. As a last step, by using the ideas and results from the rate-based

paced XCP, we propose a new core pacing architecture that is very light-weight, easier to

implement and does not require XCP framework.

Simulations show that both of our proposed pacing algorithms and network architectures

considerably increase the achievable utilization of very small optical FDL or RAM buffered

optical core links or namely throughput of TCP flows using these links.
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Chapter 1

Introduction

1.1 Background

Optical packet-switched (OPS) networks have some major differences and limitations when

compared with electronic packet-switched (EPS) networks. One of the difficulties of OPS

networks is buffering optical packets in the network. In EPS networks, contention is resolved

by storing the contended packets in a random access memory (RAM) and sending out the

packets with O(1) reading operation when the output port is free. However, the operation

is not possible in the optical domain, because there is no equivalent high capacity optical

RAM available for storing packets. Converting packets from optical domain to electronic

domain in order to use electronic RAM is not a feasible solution because of the processing

limitations of EPS. Current electronic devices are not fast enough to process the data at

the ultra high-speed of optical networks. Therefore, processing and switching in the optical

domain is necessary.

Many researchers consider long fiber lines called Fiber Delay Line (FDL) buffers to

resolve contentions in optical networks, because optical RAM is infeasible or has immature

technology. Optical RAM is under research (for example, Takahashi et. al. [1] and NICT

project (phase II) [2]). Basic operation of optical RAM is experimentally confirmed for

40-Gbit/s 16-bit optical packets in Ref. [1]. However, optical RAM is not expected to have
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1.1 Background

a large capacity, soon. Currently, the only available solution that can be used for buffering

in the optical domain is using FDLs. Contended packets are switched to FDLs in order to

be delayed. However, FDLs have important limitations. First of all, FDLs require very long

fiber lines that cause signal attenuation, inside the routers. There can be a limited number

of FDLs in a router due to space considerations, so they can provide a small amount of

buffering. Second, FDLs provide only a fixed amount of delay.

On the other hand, optical RAM is under research and it may be available in the near

future. Optical RAM solves the problems of FDLs like lack of real O(1) reading operation,

signal attenuation and bulkiness. Furthermore, optical RAM is expected to have a low

power consumption rate that is an important problem for electronic RAM. However, Optical

RAM is not expected to have a large capacity, soon. Therefore, decreasing the huge buffer

requirements of OPS networks is a must in order to make use of optical buffering.

Having a very small buffering capacity brings some important performance problems to

optical packet switched (OPS) networks. According to a rule-of-thumb [3], an output link of

a router needs a buffer sized at B = RTT ×BW , where RTT is the average round trip time

of flows and BW is the bandwidth of output link, in order to achieve high utilization with

TCP flows. Recently, Appenzeller et al. [4] showed that when there are many TCP flows

sharing the same link, a buffer sized at B = RTT×BW√
n

, where n is the number of TCP flows

passing through the link, is enough for achieving high utilization. However, a significant

decrease in buffer requirements is possible only when there are many flows on the link.

This buffer requirement is still high for high speed OPS routers with very small amount

of buffering capacity. Further decreasing the buffer requirements is necessary. However,

bursty nature of TCP flows causes a high packet drop rate in small buffered networks and

limits further decreasing the buffer size.

Recently, [5] proposed that O(log W ) buffers are sufficient where W is the maximum con-

gestion window size of flows when packets are sufficiently paced by modifying TCP senders

to used Paced TCP [6] or by using slow access links. Pacing is defined as transmitting ACK

(data) packets according to a special criteria, instead of transmitting immediately upon ar-

rival of a data (ACK) packet [6]. However, O(log W ) buffer size depends on the maximum
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Chapter 1. Introduction

congestion window size of TCP flows that may change in time. Moreover, using slow access

links is not a preferred solution when there are applications that require high-bandwidth on

the network. Using Paced TCP for these applications by replacing TCP senders with paced

versions can be hard. Furthermore, this proposal was based on the assumption that most

of the IP traffic is from TCP flows. A recent paper [7] shows that even small quantities of

bursty real-time traffic can interact with well-behaved TCP traffic and increase the buffer

requirements.

It may be better to design a general architecture for OPS networks that:

• Can achieve high utilization in a small buffered OPS network independent of the

number of TCP or UDP flows;

• Does not require limiting the speed of access links;

• Does not require replacing sender or receiver agents of computers using the network.

Applying pacing to the input traffic at the edge nodes of an OPS network can be a

good choice for achieving these goals. Even if TCP pacing is applied at the clients, the

aggregated traffic arriving to the OPS network may end up behaving bursty. Therefore,

pacing at the edge of OPS network is more effective on minimizing burstiness of traffic

entering the OPS domain. Ref. [8] proposes applying traffic shaping at edge nodes of OPS

network for minimizing traffic burstiness. It proposes a delay-based pacing algorithm that

adaptively chooses packet spacing according to input traffic class for achieving bounded

delay requirements. Ref. [9] proposes traffic shaping at edge nodes by using a modified

form of renegotiated service with rate prediction to reduce contention in the core. Edge

nodes use packet scheduling to rearrange possible contended slots before entering the core,

thus reducing core optical buffering. Proposed architecture needs information of relevant

network scheduling.

Another possible solution is applying pacing at the core nodes. Ref. [10] proposes a

RC traffic shaper for ATM networks that smooths the traffic by adjusting the output rate

based on the buffer occupancy that depends on the input traffic rate. Output rate is linearly
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1.2 Outline of Thesis

proportional to the shaping buffer occupancy. The problem of the proposed algorithm is

that it requires a large buffer for preventing cell loss. Large buffer brings higher delay.

Furthermore, peak cell input rate must be known. In order to solve these problems, Ref.

[11] proposes Interval Filter Shaping Algorithm (IFSA) that smooths cell inter-arrival time

with a low latency. IFSA makes use of a low pass filter and special scheduler for smoothing

the traffic. The problem of core pacing is that buffer capacity may not be enough for both

applying pacing a providing buffering for contending packets at the same time as the buffer

size is very small. Small buffer size of core nodes usually causes core pacing to have lower

performance than edge pacing that can make use of big electronic buffers for incoming

electronic packets.

In this thesis, we propose methods for minimizing the buffer size of optical networks.

We propose small buffered architectures for both edge node pacing and core node pacing

using optical RAM and FDL-based buffering.

1.2 Outline of Thesis

Rate-based Pacing for Small-buffered Optical Packet

Switched Networks [12, 13, 14, 15]

We propose an all-optical network architecture that can achieve high utilization and

low packet drop ratio in small buffered OPS networks. XCP [16] is a new congestion

control algorithm using a control theory framework. XCP was specifically designed for high-

bandwidth and large-delay networks. XCP was first proposed in Ref. [16] as a window-based

reliable congestion and transmission control algorithm. XCP framework is selected because

XCP framework allows individual control of the utilization level of each wavelength. We

show that selecting a target wavelength utilization less than actual wavelength capacity in

XCP control algorithm can allow operating at a utilization level that can give a low packet

drop rate for a selected FDL granularity. In our architecture, if there is traffic between an

edge source-destination node pair, a rate-based XCP macro flow is created, and incoming
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Chapter 1. Introduction

TCP and UDP packets of this edge pair are assigned the XCP macro flow as shown in Fig.

2.1 similar to TeXCP [17]. The edge nodes of OPS network apply leaky-bucket pacing to the

macro flows by using the rate information provided by XCP for minimizing the burstiness.

As a result, there is no need to modify the TCP and UDP agents of computers or limit

the speed of access links for decreasing burstiness. We evaluate the FDL requirements and

packet drop rates on a realistic mesh NSFNET topology with multiple-hop paths. We show

how FDL requirements change with utilization, FDL granularity, scheduling, and packet

size distribution.

Switch Architectures for Small-buffered Optical Packet

Switched Networks [18]

We investigate and compare input and output buffered optical switch architectures for

minimizing the size of optical switching fabric of core nodes while achieving high throughput

with small FDL-based buffers. Switching fabric size is an important cost factor in routers,

so it is necessary to design a suitable switch architecture for the proposed small-buffered

architecture. Many switching fabric architectures like MEMS, optomechanical, electrooptic,

thermooptic, liquid-crystal based switches are proposed for optical switching [19]. However,

the number of switching elements in the fabric increases together with the overall cost as

the number of ports of the switch increases. Moreover increasing the switch size introduces

high crosstalk and insertion losses in many proposed switching fabric architectures. We

compare the buffering architectures input buffering with VOQ, and output buffering with

void filling, by using a star topology. We evaluate the packet drop rates depending on FDL

granularity and packet size distribution. We show that input buffering requires comparable

number of delay lines as output buffering architectures at 30% utilization, which is typical

for backbone links of network operators, with pacing.

Pacing for Optical Packet Switched Networks with Very

Small Optical RAM [20, 21, 22]
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1.2 Outline of Thesis

First, we evaluate several transmission control algorithms in small buffered networks.

The algorithms include TCP Reno, TCP NewReno, Highspeed TCP with SACK, and XCP.

Simulation results show that all non-paced TCP and XCP variants perform poorly. Fur-

thermore, the results show that even rule-of-thumb buffers are not enough for XCP in some

cases because of high burstiness of XCP. We evaluate the effectiveness of pacing method

at sender side for making transmission control algorithms suitable for very small buffered

networks. We show that pacing alone is not enough for XCP to make suitable for small

buffered networks, so we introduce a suitable parameter set. Simulation results show that

buffer requirements on routers are greatly reduced by paced XCP with suitable parameter

settings, while keeping the high fairness, fast convergence, and high utilization.

As a next step, we evaluate the optical RAM size requirements of our rate-based XCP

pacing architecture. We show that proposed architecture has very low buffer requirements

with optical RAM due to advantage of O(1) reading operation of optical RAM when com-

pared with FDLs.

Node Pacing for Optical Packet Switching [23, 24, 25]

In the previous chapters, we proposed and evaluated an architecture for decreasing

buffering requirements by using XCP framework. However, implementation cost XCP

framework can be high. Therefore, we propose a light-weight alternative architecture that

can shape traffic at edge or core nodes by using the buffer occupancy information. Ref.

[10] proposes a RC traffic shaper for ATM networks that smooths the traffic by adjust-

ing the output rate based on the buffer occupancy that depends on the input traffic rate.

The problem of RC traffic shaper is that it requires a large buffer for preventing cell loss.

Large buffer brings higher delay. Furthermore, peak cell input rate must be known. Our

architecture does not have these problems because our architecture applies pacing by using

a piecewise linear output transfer rate control function and making use of average input

traffic rate information calculated inside the node. This architecture does not require XCP

framework, so it is easier and cheaper to implement.
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Chapter 1. Introduction

We evaluate the proposed architecture on an Abilene-inspired mesh topology. We com-

pare different combinations of edge and/or core node pacing architectures with non-paced

TCP and paced TCP flows. We show that our node pacing algorithm can considerably

increase the achievable utilization of very small optical RAM buffered optical core links or

namely throughput of TCP flows using these links.
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Chapter 2

Rate-based Pacing for

Small-buffered Optical Packet

Switched Networks

2.1 Introduction

In this chapter, we introduce an all-optical OPS network architecture that can achieve

high utilization and low packet drop ratio by using FDL-based small buffering. We con-

sider an OPS domain where packets enter and exit the OPS domain through edge nodes.

We propose using a Explicit Congestion Control Protocol(XCP) based [16] intra-domain

congestion control protocol for achieving high utilization and low packet drop ratio with

small FDL buffers. XCP [16] is a new congestion control algorithm using a control theory

framework. XCP was specifically designed for high-bandwidth and large-delay networks.

XCP was first proposed in Ref. [16] as a window-based reliable congestion and transmission

control algorithm. XCP framework is selected because XCP framework allows individual

control of the utilization level of each wavelength. We show that selecting a target wave-

length utilization less than actual wavelength capacity in XCP control algorithm can allow
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2.2 FDL Architecture, Slots Size and Voids

TCP, UDP Flows

XCP XCPXCP XCP

XCP Macro Flow

XCP

IP Routers
IP Routers

Figure 2.1: XCP macro flows.

operating at a utilization level that can give a low packet drop rate for a selected FDL gran-

ularity. XCP is specially designed for high-bandwidth and large-delay networks that makes

XCP well-suited to optical networks. In our architecture, if there is traffic between an edge

source-destination node pair, a rate-based XCP macro flow is created, and incoming TCP

and UDP packets of this edge pair are assigned the XCP macro flow as shown in Fig. 2.1

similar to TeXCP [17]. The edge nodes of OPS network apply leaky-bucket pacing to the

macro flows by using the rate information provided by XCP for minimizing the burstiness.

As a result, there is no need to modify the TCP and UDP agents of computers or limit the

speed of access links for decreasing burstiness.

We evaluate the FDL requirements and packet drop rates on a realistic mesh NSFNET

topology with multiple-hop paths. We show how FDL requirements change with utilization,

FDL granularity, scheduling, and packet size distribution.

2.2 FDL Architecture, Slots Size and Voids

FDL architecture used in this chapter is a single stage equidistant FDL set with B delay

lines. Switch and FDL architecture is shown in Fig. 2.2 [26].

In the FDL architecture, length of delay lines will be given in terms of slot number. FDL

length distribution increases linearly (x, 2x, 3x, 4x. . . ) where x is FDL granularity. The
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Figure 2.2: Switch and FDL architecture.

number of required FDLs (denoted by B) will be evaluated for different FDL granularities.

Minimizing the number of delay lines in a switch is necessary because the size and the cost

of the switching fabric increases as the number of delay lines increase. Size of the switching

fabric is the main cost factor of routers. Increasing the granularity can decrease the number

of required FDL lines and therefore decrease the cost of the switch. However, selecting a

too high granularity may increase the packet loss rate as we will show in the simulations.

We are using Slotted Variable-Length Packet Approach (SVLP)[27] for adapting asyn-

chronous, variable-length packets coming from the electrical domain to the synchronous

and slotted OPS network. Variable sized IP packets divided into variable number of slots

enter OPS network as a train of slots without any burst assembling. OPS routers switch

slot train of a packet as a whole and sequentially. Using a slotted architecture decreases

the packet drop rate, but requires slot synchronization before switching.

In this approach, because using FDLs and a slot-based architecture may cause voids,
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which decrease the effective throughput of output links. Size of voids depends on the slot

size, so slot size is an important design parameter that affects the effective utilization and

buffer requirements. Voids in the architecture can be classified into following two groups.

2.2.1 Voids in Slots

Voids in slots occur when the packet size is not equal to a multiple of slot size. In this case,

padding is applied to the last slot. Padding decreases the utilization efficiency depending

on the packet size distribution and the slot size. For example, if the slot size is 500Bytes

and if a 501Bytes packet arrives, the packet will be carried in two slots with a total length

of 1000Bytes. There will be a 409Bytes void due to padding in the second slot. Using a

small slot size can increase the efficiency in general due to less padding. However, efficiency

increase may not be high at too small slot sizes as guard bands and slot headers start

becoming the main source of decrease in efficiency. Furthermore, buffer requirements may

increase as switching operation becomes similar to an unslotted network.

If we select a large slot size, effective throughput is low when the average size of arriving

packets is small. For example, if the slot size is 1500Bytes and a 40Bytes packet is carried

in the slot, 97.3% of the slot is wasted due to padding (void).

Selecting a right MTU for the OPS link layer is important. Selecting a MTU less than

slot payload size does not make sense, because a single packet can never fully utilize the

slot capacity. We do not consider burst assembling, so assembling multiple packets in order

to fill in voids a slot is not a choice. MTU can be selected as any value equal to or bigger

than slot capacity as SVLP-based adaptation divides variable sized IP packets into variable

number of slots transparently. On the other hand, the extreme case of using only a single

slot for carrying a whole packet without dividing into slots by selecting the slot payload

size and MTU of OPS link layer equal to each other can greatly simplify the FDL design

process, as FDL granularity can be directly selected as 1 slot size independent of packet

size distribution. Furthermore, scheduling algorithms become simpler because there is no

need to take into account the length of a train of slots as all packets are inside a single slot
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[27] and there is no need for void filling scheduling when FDL granularity is 1 slot size.

2.2.2 Void Slots in FDLs Between Packets

When slot size is small, buffer requirements can be decreased by increasing the FDL granu-

larity. However, if FDL granularity is larger than a single slot, unused void slots may occur

in FDLs. FDL sets with granularity larger than single slot can provide only a limited set

of required delays. For example, FDL set with granularity of 2 slots can delay the packets

by 2, 4, 6, 8. . . slots, but cannot delay the packets by 1, 3, 5, 7. . . slots. When the required

delay is not supported by the FDL set, FDL set may delay a packet more than the re-

quired delay. In this case, extra delaying the packets causes unused void slots in FDLs and

output. Using a void-filling scheduling algorithm can fill in some of the void slots. How-

ever, void-filling algorithms increase the scheduler complexity. Furthermore, void filling

algorithms may cause packet reordering, so they must be carefully applied. We use a void

filling algorithm that prevents packet reordering among input-output ports of the switch.

The algorithm keeps a list of the departure time of the last buffered packets destined from

each input port to each output port. Moreover, it keeps a list of the voids in the buffer

reservation table of each output port. When there is a packet to be buffered, in order to

preventing reordering we find the first void in the buffer reservation table that starts after

the departure of the last buffered packet using the same input output pair. Then starting

from this void we search for the first void that the packet fits into by using the FDL set. If

there is no suitable void, packet is scheduled after the last packet in the buffer. We show

and compare the simulation results of both with and without void-filling scheduling.

Voids are shown as an example in Fig. 2.3. FDL granularity is selected as 4 slots.

m + 1st packet contends with mth packet, so m + 1st packet must be delayed by 5 slots for

solving the contention. However, FDL set with granularity of 4 slots can delay the packets

by only 4, 8, 12. . . slots, so the packet is delayed by 8 slots instead of 5 slots. Therefore, 3

void slots occur between mth and m + 1st packets. Furthermore, size of these two packets

is not equal to a multiple of slot size, so voids occur inside their last slots.
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mth packet
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Void Slot
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Figure 2.3: Voids.

2.3 XCP Control

2.3.1 XCP Basics

XCP is a new congestion control algorithm specifically designed for high-bandwidth and

large-delay networks. XCP makes use of explicit feedbacks received from the network. It

decouples the utilization control from fairness control. Core routers are not required to

maintain per-flow state information.

Working principle of XCP is as follows: XCP core routers maintain a per-link control-

decision timer. When a timeout occurs, Core routers update their link control parameters

calculated by Efficiency Controller and Fairness Controller according to link utilization,

spare bandwidth and buffer occupancy. XCP sender agent sends its traffic rate to XCP

receiver in the header of data packets or a probe packet. On the way to the XCP receiver,

XCP core routers read this information and calculate a feedback that shows the desired

traffic rate change for this XCP flow and updates the feedback header of the packet. XCP

receiver simply sends back the final feedback to the XCP sender. XCP sender updates its

sending rate according to this feedback.
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Efficiency Controller (EC)

Efficiency Controller is responsible for maximizing link utilization by controlling aggregate

traffic. Every router calculates a desired increase or decrease in aggregate traffic for each

output port by using the equation Φ = α · S − β · Q/d. In this equation, Φ is the total

amount of desired change in input traffic. α and β are spare bandwidth control parameter

and queue control parameter respectively and d is the control decision interval. S is the

spare bandwidth that is the difference between the link capacity and input traffic in the

last control interval. Q is the persistent queue size.

Fairness Controller (FC)

After calculating the aggregate feedback Φ, FC is responsible for fairly distributing this

feedback to flows. FC uses an AIMD-based control for distributing the feedback. It means

that when Φ is positive, fairness controller increases the transmission rate of all flows by the

same amount. When Φ is negative, fairness controller decreases the transmission rate of each

flow proportional to flow’s current transmission rate. However, when Φ is small, convergence

to fairness may take a long time. Furthermore, if Φ is zero, XCP stops converging. In order

to prevent this problem, bandwidth shuffling, which redistributes a small amount of traffic

among flows, is used. This shuffled traffic is calculated by h = max(0, γ ·u−|Φ|), where γ is

the shuffling parameter and u is the aggregate input traffic rate in the last control interval.

When a router receives a packet containing feedback, it calculates and compares its own

feedback with the feedback available in the packet header. If its own feedback is smaller

than the one in the header, it updates the feedback in the header with its own feedback.

Otherwise, it does not change the feedback available in the header.

When a XCP source agent receives an ACK containing XCP feedback, it updates its

congestion window size according to the formula cwnd = max(cwnd + H feedback, s),

where s is the packet size and H feedback is the feedback in the ACK packet.
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2.3.2 XCP Variants

XCP was first proposed in Ref. [16] as a window-based reliable congestion and transmission

control protocol. The same paper also proposes a XCP-based Core Stateless Fair Queuing

as a gradual deployment method. XCP-based Core Stateless Fair Queuing algorithm creates

a XCP macro flow, assigns the TCP and UDP flows to the XCP macro flow. The edge

nodes forward the TCP and UDP packets inside the XCP macro flow according to the

XCP macro flow rate. [16] states that the algorithm can be further simplified by using

special probe packets for receiving the feedbacks for macro flow rate calculation instead of

attaching congestion header to forwarded packets.

TeXCP [17] is a traffic engineering protocol using a rate-based XCP congestion control

allowing traffic engineering by applying load balancing with multi-path routing. TeXCP

creates a macro flow and assigns TCP and UDP flows to this macro flow and forwards the

packets according to XCP flow rate similar to simplified XCP-based Core Stateless Fair

Queuing.

2.3.3 Rate-based Paced XCP

We propose Rate-based Paced XCP as an intra-domain traffic shaping and congestion

control protocol in an OPS network domain. In this architecture, XCP sender agent on an

edge node multiplexes incoming flows and creates a macro flow like a LSP as shown in Fig.

2.1, and applies leaky bucket pacing according to rate control to the macro flow and sends

to a receiver XCP agent on destination edge node. The receiver XCP agent de-multiplexes

the macro flow and forwards the packets of individual flows to their destinations.

In the original XCP [16], feedbacks are carried in the header of data packets (per-packet

feedback). In this case, core routers must read and update the feedback in the packet header

by calculating a new feedback. However, calculating a new feedback for and updating the

header of each optical packet at ultra high speed is hard. In our proposal, simplified XCP-

based Core Stateless Fair Queuing [16] and TeXCP [17], each macro flow sends its feedback

in a separate probe packet once in every control period, instead of writing feedback to packet
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headers, so there is no need for calculating a per-packet feedback. Probe packets are carried

on a separate single control wavelength, which means that we are separating the control

channel and data channels. Using a separate single wavelength with low transmission rate

for probe packets allows applying electronic conversion for updating feedback in packet

headers and buffering the probe packets in electronic RAM in case of a contention.

Core routers use a separate XCP control agent for each wavelength on an output link.

When a probe packet of macro flow i arrives to a core router, FC of the XCP agent

responsible for the wavelength that macro flow i was assigned to calculates a positive

feedback pi and a negative feedback ni for flow i. Positive feedback is calculated by pi =
h+max(0,Φ)

N and negative feedback is calculated by ni = ui·(h+max(0,−Φ))
u , where N is the

number of macro flows on this wavelength, ui is the traffic rate of flow i estimated and sent

by the XCP sender in the probe packet and h is the shuffled bandwidth. feedback = pi−ni

gives the required change in the flow rate as a feedback. When a core router receives a probe

packet, router calculates and compares its own feedback with the feedback available in the

probe packet. If core router’s own feedback is smaller than the one in the probe packet, core

router replaces the feedback in the probe packet with its own feedback. Otherwise, core

router does not change the feedback. Core routers can estimate the number N by counting

the number of probe packets received in the last control interval or use the number of LSPs

if GMPLS is available [17]. In [16], the control interval is calculated as the average RTT of

flows using the link. In TeXCP and our architecture, control interval is the maximum RTT

in the network. TeXCP uses a simplified version of XCP’s fairness controller algorithm

without the bandwidth shuffling algorithm of XCP, but our algorithm uses the bandwidth

shuffling algorithm of XCP. In TeXCP, core routers send both pi and ni feedback by probe

packets to sender agents, but in our algorithm core routers send only feedback = pi − ni

like in [16].

As explained in Sec. 2.1.1, Φ is calculated for a wavelength by using the equation

Φ = α ·S−β ·Q/d where S is the spare bandwidth that is the difference between the wave-

length capacity and input traffic on this wavelength in the last control interval. Therefore,

wavelength capacity must be explicitly given to XCP algorithm for calculating S. Giving
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a false capacity value less than actual wavelength capacity causes under-utilization. XCP

algorithm converges to the given virtual capacity. We use this property of XCP to limit

utilization of OPS network at a level that provides low packet drop ratio with the available

FDL set.

2.4 Evaluation

2.4.1 Simulation Settings

Proposed protocol and slotted WDM OPS architecture is implemented over ns version 2.28

[28]. It is assumed that there is a backlogged traffic at edge buffers, so each edge node

sends traffic to all other edge nodes at the maximum possible rate controlled by XCP. We

chose XCP’s α, β and γ parameters for edge routers as 0.2, 0.056 and 0.05, respectively. α

parameter controls the utilization convergence speed. Higher α value allows faster change in

utilization, but also causes higher utilization overshoots. We chose the α parameter as 0.2,

which gives a slower but more stable link utilization and decreases utilization overshoots

when compared with the value 0.4 selected in [16]. When α parameter is decreased, it is

also necessary to decrease γ parameter responsible for bandwidth shuffling. Otherwise, too

much under-utilization may occur in some links in case these links carry flows that are

bandwidth throttled in other bottleneck links as explained in [16]. Therefore, γ=0.05 is

used instead of γ=0.1 in [16]. FDL architecture makes it hard to evaluate and provide a

buffer occupancy value to XCP algorithm. Furthermore, our aim is to have a small buffered

network and effect of queue parameter in XCP calculations is low as persistent queue size

is small (usually zero unless overload) due to a small buffered network, so β parameter is

set to zero in the core routers. These may not be the optimum values, but optimization of

XCP parameters is left as a future work.

Simulator uses cut-through packet switching for data wavelengths. There is a single

slow control wavelength dedicated for probe packets. Control wavelength uses store-and-

forward switching. XCP agents start sending data randomly in the first 10s and continue

until the simulation ends. Total simulation duration is 40s.
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Figure 2.4: NSFNET topology.

Edge nodes use electronic buffering, but core routers use only FDLs for buffering optical

data packets. Contention of probe packets on control wavelength is resolved by electronic

RAM. O/E/O conversion is not a problem for control wavelength due to its low speed.

Fig. 2.4 shows the simulated NSFNET topology. The nodes numbered from 0 to 13

are the core nodes and the rest are the edge nodes connected to the core nodes. All links

(including edge and core links) have a single data wavelength with the same capacity.

All links have the same XCP target utilization. There are a total of 28 nodes (14 core

nodes+14 edge nodes) and 35 links (21 core links+14 edge links). The propagation delay

of links between core and edge nodes is selected as 0.1ms. All links (including edge and

core links) apply optical packet switching. Each edge node sends traffic to all other edge

nodes at the maximum possible rate, so there are multiple bottleneck links. XCP control

period of core routers and probe packet sending interval of edge routers is selected as 50ms

by considering extra processing and queuing delays in the core routers. Target utilization

is set to 90% for output links of edge nodes in order to prevent buffer buildups in the buffer

between the link and paced XCP sources. The capacity of the data wavelength is set to

1Gbps. The capacity of the XCP control wavelength is 100Mbps.
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In all simulations, we evaluate the aggregate packet drop rate inside the OPS core

network. We compare the packet drop rate of the proposed pacing architecture with the

packet drop rate of poisson traffic arrival. For the traffic matrix of poisson traffic, we use the

traffic matrix that proposed XCP based architecture converges to when there is a low packet

drop rate with enough buffering and FDL granularity of 1. TCP traffic is well known to be

burstier than poisson distribution and aggregation of many TCP flows does not converge to

poisson stream [29]. Burstiness increases the buffer requirements. [5] decreases the buffer

requirements by making the traffic poisson-like by modifying TCP senders to used Paced

TCP or by using slow access links. In this chapter, we show that our proposed architecture

can achieve packet drop rates lower than poisson traffic.

2.4.2 Evaluations

Slot Size is Equal to MTU

We first compare the performance of proposed architecture and poisson traffic when slot size

is equal to MTU, which is selected as 1500Bytes in the simulations. It means each packet is

carried inside only a single slot. Fig. 2.5 shows the aggregate packet drop rate of proposed

architecture and poisson traffic (called Paced and Poisson in the figures, respectively) at

90%, 60% and 30% target link utilization, which is the utilization due to optical packets

including data payload and wasted void padding inside them. x-axis shows the limit of the

number of delay lines per output in linear scale and y-axis is the aggregate packet drop

rate in the core in log scale. Average, minimum and maximum drop rate results of 10

simulations, which have different flow starting times, are plotted. We see that deviation

increases as the drop rate decreases, but the overall tendency is the same. Therefore, in

the following figures a single simulation is done for each parameter set. FDL granularity is

1 slots in all plots. Higher granularities do not bring significant improvement, so they are

not plotted. As seen in Fig. 2.5, improvement of proposed architecture increases as the link

utilization increases. We see that buffer requirement of proposed paced architecture at low

packet drop rate like 10−6 is around 8 times lower than poisson traffic arrival. Even at 30%
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Figure 2.5: Aggregate packet drop rate with limited number of FDLs per link when slot
size is 1500Bytes for (a) 90%, (b) 60%, and (c) 30% utilization.
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utilization, we see that proposed architecture can get much lower packet drop rates with the

same buffering even though poisson traffic has low buffer requirements at this utilization.

For example, when there are 3 delay lines per output link, packet drop rate of the proposed

architecture is around 10 times lower. The improvement becomes bigger as the number

of delay lines increases. This is an expected result as Ref. [30] theoretically shows that

multiplexed periodic streams like the paced traffic in our architecture give lower packet drop

rate than poisson traffic as they are less burstier [29] than poisson traffic. Furthermore,

Ref. [30] shows that drop rate comes closer to poisson as the number of periodic streams

increase. Therefore, we can expect to have a lower drop rate by applying pacing to macro

flows at the edge nodes as in our architecture than individually pacing TCP flows. When

there is no buffering, both paced and poisson traffic has the same packet drop rate as seen

in Fig. 2.5. This is an expected result, because packet drop rate depends only on the packet

contention probability that is independent of burstiness.

When slot size is equal to MTU, effective throughput may be low when the average size

of arriving packets is small. On the other hand, it can greatly simplify the FDL design

process, as FDL granularity can be directly selected as 1 slot size independent of packet

size distribution as higher granularities do not bring significant improvement and scheduling

algorithm becomes simpler.

Slot Size is 500Bytes

When slot size is lower than MTU, packet size distribution must be taken into account as

big packets may use multiple slots. In this section we compare the performance of proposed

architecture and poisson traffic when the slot size is tentatively selected as 500Bytes that

is one third of the MTU.

It is hard to do a direct comparison of different slot sizes, because guard bands and slot

headers start becoming the main source of decrease in efficiency as we decrease the slot size

or increase the link speed. Size of guard bands depends on the type of switching hardware

and link speed.

[31] shows that size of packets in Internet2 traffic is mainly composed of very small and
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big packets and there is around 3:2 ratio between these two, so this packet size distribution

is used in the simulations as a realistic packet size distribution. Simulated packet size

distributions are

• All packets are less than or equal to 1 slot (500 Bytes) size

• All packets are 3 slots (1500 Bytes) size

• 60% of packets are less than or equal to 1 slot (500 Bytes) size, 40% of packets are 3

slots (1500 Bytes) size (realistic traffic)

Fig. 2.6 shows the aggregate packet drop rate for different packet size distributions,

FDL granularities for proposed architecture and poisson traffic when target utilization is

90%. In all subplots, x-axis shows the limit of the number of delay lines per output and

y-axis is the aggregate packet drop rate in the core, both in log scale. G lines in the figure

show the applied FDL set granularity. Fig. 2.6(a,b,c) shows the drop rates when packet size

distribution is all 1500Bytes, all less than or equal to 500Bytes and realistic distribution,

respectively. Note that effective utilization and throughput is different in simulation of

different packet size distributions at the same target link utilization due to padding inside

the optical packets. When we check these subplots, we see that packet size distribution

has a big impact on the FDL requirements. In all subplots, FDL granularity of 1 slot gives

a fast decrease in drop rate, but FDL granularity of 2 slot tends to stay constant after a

decrease at the beginning because of the the void slots in FDLs due to high granularity.

Voids increase the effective load to higher than link capacity, so low packet drop rate can

not be achieved with at 90% utilization with small buffers at high FDL granularity. In all

subplots, we see that buffer requirement of proposed paced architecture at a low packet

drop rate like 10−6 is around 8 times lower than poisson traffic arrival like in Fig. 2.5(a).

Actually Fig. 2.6(b) is almost the same as Fig. 2.5(a), because Fig. 2.6(b) is merely a case

where slot size and packet size distribution are down-scaled to one third of Fig. 2.5(a).

Realistic packet size distribution in Fig. 2.6(a) shows that mainly big packets determine

the in the buffer requirements, so its buffer requirements are almost the same as the case
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Figure 2.6: Aggregate packet drop rate with limited number of FDLs per link for 90%
utilization when packet size distribution is (a) all packets are 1500Bytes, (b) all packets are
less than or equal to 500Bytes and (c) realistic distribution.
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where all packets are 1500Bytes size in Fig. 2.6(c) and around 3 times higher than the case

all packets are less than or equal to 1 slot (500 Bytes) size in Fig. 2.6(b).

Fig. 2.7 shows the aggregate packet drop rate when target utilization is 30%. Fig.

2.7(a,c,e) and Fig. 2.7(b,d,f) show the drop rates with the proposed pacing architecture

and poisson traffic, respectively. When we check these subplots, we see that packet size

distribution has a big impact on the optimum FDL granularity. Fig. 2.7(a,e) shows that

proposed architecture has optimum FDL granularity of 7 slots for realistic packet size

distribution and when all packets are 1500Bytes. On the other hand, when packet size

distribution is all packets are less than or equal to 500Bytes, the optimum granularities are

1, 2 and 3 slots as seen in Fig. 2.7(c). Granularity of 7 slots have much higher packet drop

rate these granularities when there are multiple delay lines per output link. In general,

small FDL granularities tend to give a sharp decrease in drop rate as number of delay lines

increase, but high FDL granularities tend to stay almost constant after with a decrease

at the beginning in the proposed architecture. This constant drop rate in Fig. 2.7(a,c) is

mainly because of load overshoot due to the void slots in FDLs because of high granularity.

When we compare these high granularities for paced and poisson traffic, we see that paced

architecture gives higher drop rates mainly because of the synchronized packet contentions

due to pacing. Otherwise, paced architecture have lower packet drop rates at the same

FDL granularities unless granularity is high. Realistic packet size distribution of paced

architecture at granularity of 12 slots in Fig. 2.7(e) shows that contention synchronization

is lower when there is a mixed packet size distribution using different number of slots.

Void slots in FDLs are served by the routers as if they are not empty, so void slots

increase the effective load. When there are void slots in FDLs, using the size of slots

occupied by the packets as a metric does not give a reliable measure of congestion. It can

be possible to guarantee preventing overload by carefully selecting the target utilization.

In the worst case, all packets entering an FDL occupy minimum number of slots and

synchronized packet arrivals cause the maximum number of possible void slots, which is

denoted by V , inside the FDL. Therefore, in a single stage equidistant FDL set, lowest

efficiency in the worst case is approximately,
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Figure 2.7: Aggregate packet drop rate with limited number of FDLs per link for 30%
utilization when packet size distribution is all packets are 1500Bytes with (a) paced and
(b) poisson traffic, all packets are less than or equal to 500Bytes with (c) paced and (d)
poisson traffic, realistic distribution with (e) paced and (f) poisson traffic.
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M

M + V
, (2.1)

where M is the number of slots occupied by the smallest possible packet size and V is

the maximum number of void slots may occur upon arrival of a packet. V equals to x− 1

slots, where x denotes the FDL granularity, as there must be an occupied slot using the

link and causing contention. Plugging V = x− 1 gives

M

M + x− 1
, (2.2)

Setting the target utilization in optical XCP routers to a value smaller than the result

of this equation can protect output wavelengths from load overshoots and protects from

drops due to void slots. It is better to apply a safety margin for possible rate oscillations

and use a target utilization a little lower than the value calculated by using the equation

above. When we use the formula to the case of all packets are 1 slot size and 3 slot size for

30% utilization, we get the limit FDL granularities 3 slots and 7 slots, respectively. When

we check the simulation results in Fig. 2.7(a,b), we see that all simulated FDL granularities

bigger than these granularities have higher drop rate than these granularities.

Scheduling

Using a void-filling scheduling algorithm can greatly decrease the packet drops due to void

slots. In other to show the effect of void filling, NSFNET is simulated with realistic packet

size distribution at 60% target utilization and 8 delay lines per output link. Slot size is

500Bytes. Fig. 2.8 shows the packet drop rates of proposed architecture and poisson traf-

fic with and without void-filling scheduling algorithm with packet reordering prevention is

applied. X-axis shows the FDL granularity in linear scale and terms of slots and y-axis is

the aggregate packet drop rate in the core in log scale. We see that when granularity is 1,

void filling algorithm give the same performance as non-void filling algorithm, as expected

because there are no void slots. As we increase the granularity, we see that void filling al-

gorithms starts giving much lower drop rates. Moreover, proposed architecture gives much
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Figure 2.8: Effect of FDL granularity and void filling scheduling on aggregate packet drop
rate.

lower drop rates than poisson traffic with the same scheduling. After an optimum granu-

larity, drop rates start increasing due to void slots. As we further increase the granularity,

proposed architecture and poisson traffic starts giving similar packet drop rate, because

load overshoot due to void slots becomes the main reason of packet drops. Optimum gran-

ularity is 2 slots for non-void filling algorithms, while it is 3 slots for void-filling scheduling.

In general, we see that applying void-filling scheduling and using the proposed architecture

together can greatly decrease the drop rate.

2.5 Conclusions

In this chapter, we proposed an architecture designed for OPS WDM networks with pacing

at edge nodes for minimizing the buffer requirements. We evaluated the packet drop rates

with extensive simulations on a meshed network with multiple-hop paths and showed how
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FDL requirements change with slot size, FDL granularity, scheduling and packet size distri-

bution. Simulation results with meshed networks showed that our architecture can provide

much low packet loss ratio lower than poisson traffic in core OPS networks with small FDL

buffers. We showed that large packets and small packets have different FDL requirements.

Small packets require low granularity for low packet drop rate, but large packets require

high granularity for decreasing the number of required FDL lines. Therefore, selection of

slot size and MTU of the architecture has a strong impact on the buffer requirements. Se-

lecting a big slot size equal to MTU may decrease the efficiency due to padding for small

packets, but it has low FDL requirements and it can greatly simplify the design process and

allows much simpler scheduling. In case of using a slot size smaller than MTU, we showed

that void-filling scheduling can greatly decrease the buffer requirements.
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Chapter 3

Switch Architectures for

Small-buffered Optical Packet

Switched Networks

3.1 Introduction

In Chapter 2, we introduced an all-optical OPS network architecture that can achieve

high utilization and low packet drop ratio by using FDL-based small buffering. Switching

fabric size is an important cost factor in routers, so it is necessary to design a suitable

switch architecture for the proposed small-buffered architecture. Many switching fabric

architectures like MEMS, optomechanical, electrooptic, thermooptic, liquid-crystal based

switches are proposed for optical switching [19]. However, the number of switching elements

in the fabric increases together with the overall cost as the number of ports of the switch

increases. Also, increasing the switch size introduces high crosstalk and insertion losses in

many proposed switching fabric architectures. These losses require optical amplification

that further increases the overall cost as explained in [19]. In Chapter 2, a simple output

FDL buffered switch was used as switching architecture. In this chapter, we investigate and

compare input and output buffered optical switch architectures for minimizing the size of
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Figure 3.1: Switch and FDL architectures

optical switching fabric of core nodes while achieving higher throughput with small buffers.

For this purpose we apply the proposed FDL-based small-buffered network architecture.

We show how the FDL requirements of different switch architectures change with FDL

granularity and packet size distribution by using a star topology.

3.2 Switch, Scheduler and FDL Architectures

In Chapter 2, we evaluated the FDL requirements of an output buffered switching archi-

tecture where FDL lines are connected to the output ports of the switch as shown in Fig.

3.1(b) for a single wavelength. If there are many fiber delay lines per output link, such a

switch requires many output ports and therefore a big switching fabric However, switching

fabric size is usually one of the biggest factors determining overall router cost, so in this

chapter we try to decrease the size of the switching fabric. In Chapter 2, output buffering

without void filling was used as the buffering architecture and scheduling algorithm. In

this chapter we evaluate the switch size and buffer requirements of a different architecture

called input buffering with virtual output queuing (VOQ) scheduling shown in Fig. 3.1(a)

for a single wavelength. We also evaluate the buffer requirements of void filling scheduling

version of output buffering for comparision. Speedup is 1 in all switches.

Buffers are implemented as a single stage equidistant fiber delay lines like in Chapter 2.

FDL length distribution increases linearly (x, 2x, 3x, 4x. . . ) where x is FDL granularity.
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The number of required FDLs (denoted by B) is evaluated for different FDL granularities.

When output buffering is used, required switch size for a single wavelength is N × BN ,

where N is the number of links assuming the number of output and input links is the

same, as seen in Fig. 3.1(a). On the other hand, input buffering decreases the main

switch size to N ×N independent of the number of delay lines. Each input link requires a

1×N small switch in front of its FDL set. Therefore, input buffering can be implemented

by dividing the switching fabric into smaller switches instead of a single and large main

switch. This may bring a drastic decrease in switching fabric cost especially if B is high.

However, a well-known problem of input buffering is head-of-line blocking, which limits the

achievable utilization. We apply virtual output queuing (VOQ) scheduling for minimizing

this problem.

A FDL set provides only a limited set of required delays, unless granularity is a single

slot. When the required delay is not supported by the FDL set, packets may end up to be

delayed more than the required delay. Extra delaying the packets causes unused void slots,

which decrease the achievable throughput of output links. Void filling scheduling algorithms

decrease the number of such unused slots and decrease the FDL requirements. However,

void-filling algorithms increase the scheduler complexity, so a simple output buffering ar-

chitecture without in output buffering was used in Chapter 2. In this chapter, we evaluate

a void filling version of output buffering architecture for a more fair comparison with input

buffering architecture where void filling is necessary for VOQ. Void filling algorithms may

cause packet reordering, so they must be carefully applied. We prevent packet reordering

among the packets that will be switched through the same input-output link pairs in both

input buffering and void filling version of output buffering.

3.3 Evaluation

3.3.1 Simulation Settings

Proposed network architecture and buffering models are implemented over ns version 2.28

[28]. XCP agents start sending data randomly in the first 10s and continue until the
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Figure 3.2: Star topology

simulation ends. It is assumed that there is a backlogged traffic at edge buffers, so each

edge node sends traffic to all other edge nodes at the maximum possible rate controlled

by XCP. We chose XCP’s α, β and γ parameters for edge routers as 0.2, 0.056 and 0.05,

respectively, as explained and used in Chapter 2. However, input buffering architecture

implemented by FDLs makes it hard to provide buffer occupancy data to XCP algorithm.

Furthermore, our aim is to have a small buffered network and effect of queue parameter

is low as persistent queue size is usually small with such a small buffered network, so β

parameter is set to zero in the core routers. Ref. [32] shows that this parameter set is

stable. Total simulation duration is 40s.

Slot size is selected as 52Bytes, because Ref. [31] shows that most common small packets

on Internet2 are in the range of 40Bytes to 52Bytes. The selection of optimum slot size is

left as a future work. Probe packet size is selected as equal to the slot size. FDLs are used

for resolving contention of data packets. Contention of probe packets on control wavelength

is resolved by electronic RAM. Ref. [31] shows that size of packets in Internet2 traffic is

mainly composed of very small and big packets and there is around 3:2 ratio between these

two, so this packet size distribution is used in the simulations as a realistic packet size

distribution. Simulated packet size distributions are
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Figure 3.3: Aggregate packet drop rate with limited number of FDLs per link when packet
size distribution is realistic packet size distribution with input buffering (a) and output
buffering (b), all 1508Bytes with input buffering (c) and output buffering (d), all 52Bytes
with input buffering (e) and output buffering (f)
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• All packets are 1 slot (52 Bytes) size

• All packets are 29 slots (1508 Bytes) size

• 60% of packets are 1 slot (52 Bytes) size , 40% of packets are 29 slots (1508 Bytes)

size (realistic traffic)

The star topology shown in Fig. 3.2 is used for computer simulations. There is a

single core node for switching the packets. Star topology is simulated when there are 12

edge nodes in the network. Each source node sends data to all other edge nodes, so each

link carries 11 macro flows (LSPs) in each direction. Simulated FDL granularities range

between 1 to 100 slots. Target utilization parameter of XCP is set to 30% for output links

of core node as Ref. [4] states that network operators usually run backbone links at loads

of 10%-30%. Target utilization is set to 90% for output links of edge nodes as they can use

electronic RAM for buffering.

There is a single data wavelength on links. Propagation delay of links range between

1ms and 10ms in the network. XCP control period of core routers and probe packet sending

interval of edge routers is 40ms. The capacity of the data wavelength is set to 1Gbps when

packets are 29 slots size and realistic packet size distribution. When all packets are 1

slots size, wavelength capacity is set to 100Mbps due to simulation time constraints. The

capacity of the XCP control wavelength is 100Mbps.

Figure 3.3 shows the aggregate packet drop rate in the simulations. In all subplots,

y-axis shows the limit of the number of delay lines per link and x-axis is the aggregate

packet drop rate in the core, both in log scale. G lines in the figure show the applied FDL

set granularity. When we compare the simulation results of input buffering and output

buffering in Fig. 3.3, we see that the delay line requirements for the same packet drop rate

are close, especially for the high granularities when packets are big and all granularities

when all packets are 52Bytes. FDL requirements of input buffering is a bit higher.

In the graph, we see that granularities between 1-50 slots in big size packet simulations

and granularities between 1-3 slots in simulation of 52Bytes packets show a sharp decrease in
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drop rate as the number of delay lines increase. However, if we increase the granularity, the

drop rate decreases first and then becomes almost constant or decreases with a lower rate,

because void slots in FDLs and output due to high FDL granularity causes synchronized

packet drops and limits the achievable utilization as explained in Chapter 2.

Packet size is distribution in the network is an important factor on the selection FDL

granularity and achievable utilization. If we want a network to have very low packet drop

rate, it is necessary to select the FDL granularity according to the worst case scenario

that is the case of all packets in the network have the minimum possible size, which is

taken as 1 slot size in the simulations this chapter. After selecting an FDL granularity that

can achieve the target utilization and required packet drop ratio with small packets, the

number of delay lines of the switch can be evaluated and selected according to the FDL

requirements in simulation of a traffic composed of big packets and required packet drop

ratio. For example, Fig. 3.3(e,f) show that FDL granularities of 1, 2 and 3 slots can achieve

very low drop rate when all packets are 1 slot size. When we check the FDL requirements

of these granularities with simulation of big packets in Fig. 3.3(a,b,c,d), we see that it is

possible to get low packet drop rate with around 30-40 delay lines per link with granularity

of 3 slots. On the other hand, around 1% drop rate may be enough for internet traffic. In

such a case, using as low as 4-5 delay lines per link with granularity of 20 slots looks enough

for all simulated packet size distributions.

3.4 Conclusions

In this chapter, we investigated some optical switch architectures for minimizing the size of

optical switching fabric with the proposed network architecture based on pacing the traffic.

We compared the buffering architectures input buffering with VOQ, and output buffering

with void filling. We evaluated the packet drop rates depending on FDL granularity and

packet size distribution.

We showed that input buffering requires comparable number of delay lines as output

buffering architectures at 30% utilization, which is typical for backbone links of network
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operators, with pacing. Input buffering can be implemented by dividing the switching

fabric into smaller switches instead of a single and large main switch, so input switching

may decrease costs when the cost of a large and single switch is higher. The drawback of

input buffering is that its scheduling algorithm is more complex than scheduler of output

buffering, but processing power requirements of input buffering may be decreased with some

optimizations.
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Chapter 4

Pacing for Optical Packet Switched

Networks with Very Small Optical

RAM

4.1 Introduction

FDLs have important limitations. First of all, FDLs require very long fiber lines that cause

signal attenuation, inside the routers. There can be a limited number of FDLs in a router

due to space considerations, so they can provide a small amount of buffering. Second, FDLs

provide only a fixed amount of delay. FDL buffering is possible with today’s technology,

so many researchers consider FDL buffers to resolve contentions in optical networks. On

the other hand, optical RAM is under research and it may be available in the near future.

Optical RAM solves the problems of FDLs like lack of O(1) reading, signal attenuation and

bulkiness. However, Optical RAM is not expected to have a large capacity, soon.

TCP is well-known to behave bursty [33]. Bursty nature of TCP limits decreasing

the buffer requirements, because it brings a high packet drop rate in small buffered net-

works. One possible solution for solving this problem is TCP Pacing. Pacing is defined

as transmitting ACK (data) packets according to a special criteria, instead of transmitting
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immediately upon arrival of a data (ACK) packet [6]. Pacing is initially proposed as a

solution for ACK-compression [6]. Kulik et al, proposed using paced TCP for solving the

problem of queuing bottlenecks by preventing bursty behavior of TCP [34]. In Ref. [35],

results of extensive simulations show that there are many cases where paced TCP gives

worse performance than TCP without pacing, so pacing must be applied carefully. Ref. [5]

argues that when pacing is used, O(logW ) buffers are sufficient where W is the maximum

congestion window size of each flow. However, architecture in Ref. [5] imposes a limitation

on the congestion window size of all flows, because the buffer size in their proposal depends

on the maximum window size. When there are not enough number of flows, these flows can

utilize only a small amount of bandwidth because of the window size restriction. It gives

high utilization when the network is slightly over-provisioned and there are enough number

of flows.

First, we evaluate Paced (P.) and Non-Paced (N.P.) variants of TCP Reno, TCP

NewReno, HSTCP with SACK [36] and XCP [16] transmission protocols. TCP Reno and

NewReno are selected for showing the effect of packet recovery mechanisms when packet

losses occur. HSTCP is selected because it can achieve high utilization in high-bandwidth

product links much faster than Reno and NewReno without requiring router-assistance, so

it is a possible alternative to XCP. In Ref. [16], it is shown that XCP significantly improves

the overall performance when compared with TCP in terms of drop rate, utilization, queue

build-up, delay and fairness. Therefore, we selected and focused on XCP. However XCP

requires router-assistance. The income of router-assistance will be shown by comparing the

performance of XCP with other TCP variants. We show that even rule-of-thumb buffers

are not enough to N.P. XCP in some cases because of high burstiness and show the effect of

pacing. Then, we introduce a methodology based on pacing and careful selection of param-

eters for decreasing the buffer requirements of P. XCP for very small buffered networks. We

show the required buffer size for P. XCP on different traffic and network settings. Then,

we compare the performance of other P. TCP variants with P. XCP.

In the second part, we replace evaluate the optical RAM size requirements of our rate-

based paced XCP architecture that we proposed in Chapter 2. We show that proposed

– 40 –



Chapter 4. Pacing for Optical Packet Switched Networks with Very Small Optical RAM

architecture has very low buffer requirements with optical RAM due to advantage of O(1)

reading operation of optical RAM when compared with FDLs.

4.2 Decreasing Buffer Usage of Transmission Protocols

4.2.1 XCP Parameter Settings

Routers make use of buffers when there is over-utilization, so under-utilization leads to

smaller buffer requirements. Long-term traffic over-utilization occurs when total traffic

sent by sources has a rate higher than link capacity. It can be prevented by making

sure that average input traffic sent by sources is less than bottleneck link capacity. TCP

sources continue increasing window size until congestion window size limit of operating

system is reached or packet loss occurs. Packet loss is assumed as signal of congestion.

Therefore, avoiding over-utilization of links with TCP flows is hard. However, it is possible

to guarantee under-utilized operation of the links by carefully setting a parameter in XCP.

As explained before, Φ parameter of the efficiency controller of XCP is calculated according

to the equation Φ = α · S − β ·Q/d where S is the spare bandwidth that is the difference

between the link capacity and input traffic in the last control interval. Link capacity is given

as a parameter to XCP. Therefore, a router needs to know the capacity (link speed) of its

output link when calculating feedbacks to the packets passing through this link. Giving

a capacity value less than real link-speed causes under-utilization and a value bigger than

real link-speed causes over-utilization. When a link is properly under-utilized, the spare

capacity can prevent buffer build-ups as we will show in this chapter.

4.2.2 Pacing

Even when long-term average input traffic rate is less than link capacity, it is possible

to see over-utilization on short-term scales when traffic sources are bursty. When two or

more packets contend, it causes a temporary over-utilization and buffer is used for solving

contention. Ref [16] shows that XCP significantly improves the overall performance when
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compared with TCP in terms of drop rate, utilization, queue build-up, delay and fairness.

However, XCP is not suitable for small buffered networks, because it can behave even much

more burstier than TCP. XCP is affected by all possible sources of burstiness (except slow

start burstiness [33]) of TCP. However, there is one more important reason for burstiness

in XCP. TCP increases its congestion window at most by one MSS (Maximum Segment

Size) when it receives an ACK. Unlike TCP, when XCP receives an ACK, XCP updates its

congestion window according to the formula cwnd = max(cwnd + H feedback, s). When

the congestion window is updated, the increase in window size may be bigger than a single

packet, which cause injecting a big burst of packets back-to-back into the network.

Pacing is a possible solution for minimizing burstiness of both XCP and TCP. Pacing can

be applied on data packets or ACK packets or both of them. There are different methods

for determining the pacing interval. The most common and easiest one is applying an

interval between sending times of packets, calculated by RTT
CWND , where CWND is the

current congestion window and RTT is the estimated round-trip time. There are also some

other proposals like using the Bandwidth-Share-Estimate (BSE) of TCP-Westwood [37], or

4-hop propagation delay in wireless networks [38], or randomizing the interval [39].

Pacing is implemented by using a variant of token-based leaky bucket algorithm. Only

data packets are paced since data packet pacing has a much bigger impact on the perfor-

mance than ACK pacing. A packet inside the congestion window is sent to the output link,

if there is a token inside the token buffer. After the packet is sent, a token is removed from

the token buffer. If there is no token inside the token buffer, packet must wait until a token

arrives. Arrival time of next token to the token buffer is found by dividing the size of the

last sent packet with the current rate calculated by RTT
CWND . Changing the token buffer size

affects the burstiness of the flow. Using a token buffer size of only one token gives the least

bursty output traffic. Token buffer fill rate must be updated each time CWND or RTT

changes. Furthermore, pacing algorithms require fine course timers [34].

Even when the traffic is perfectly smooth and link is under-utilized, it is possible that

two or more packets arrive from different input links at the same time. Again, buffer

is used for storing contending packets. There are methods like slot-based reservation for
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preventing packet contention, but they require complex control mechanisms, so they are

not investigated.

4.2.3 Evaluation

We evaluated paced variants of TCP Reno, TCP NewReno, HSTCP with SACK and XCP

over ns version 2.28 [28]. Their paced (P.) and non-paced (N.P.) variants are simulated and

compared. Original XCP code in ns-2 does not take the arrival of ACK packets into account

when calculating the input traffic rate information used in XCP’s efficiency controller. It

is modified so that ACKs are counted in the estimation of input traffic rate for preventing

over-utilization and buffer build-ups due to ACK packets. In all simulations, time-stamps

option is used and agents have fine course timers. There is no limit on congestion window

size of TCP and XCP flows. Slow start threshold of TCP is 64 packets. Data packet size is

1000Bytes including the headers in both TCP and XCP simulations. A dumbbell topology

and a parking-lot topology are used for computer simulations. Simple drop-tail queuing

is used. Queue limits are set in terms of Bytes instead of packets for a more realistic

simulation.

XCP is simulated with two different parameter sets. One of them is the original param-

eter set (O.P.) used in [16]. They are α=0.4, γ=0.1 and β=0.226. Capacity of the output

links are given as their real link-speed to the XCP algorithm in routers. The second set is

the conservative parameter set (C.P.) used for minimizing the buffer usage. α parameter

is decreased to 0.2, which gives a slower but more stable link utilization and decreases

utilization overshoots. When α parameter is decreased, it is also necessary to decrease γ

parameter responsible for bandwidth shuffling. Otherwise, too much under-utilization may

occur in some links in case these links carry flows that are bandwidth throttled in other

bottleneck links as explained in Ref. [16]. Therefore, γ=0.05 is used instead of γ=0.1 in

Ref. [16]. β must be selected according to the formula β = α2
√

2 as proved in Ref. [16],

so β=0.056 is straightforward. Capacity of the output links are given as 90% of their real

link-speed (target utilization) to the XCP routers. The spare 10% capacity gives a safety
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margin against possible oscillations in utilization.

Extensive simulations on mixed flow environments with competing P. and N.P. TCP

variants and performance of P. TCP flows in large buffered networks are already available

in Ref. [35] and Ref. [39], so their results are not presented here.

4.2.4 Dumbbell Topology Simulations with Long Flows

A dumbbell topology is used for simulations with static flows. The capacity of the bottleneck

link is 622Mbps (OC-12). Both edges of bottleneck link have extension links. Extension

links are 2.4Gbps (OC-48). RTT distribution between source-destination node pairs ranges

from 64ms to 100ms for preventing ACK-clocking. Average RTT is 82ms. Bottleneck delay

is 30ms.

A limited number of FTP flows start at random times between [0-10]s and continue until

the simulation stops. It is assumed that flows always have data to send. Total simulation

duration is 100s. Only the data between [40-100]s is used in average utilization calculations.

Two-way traffic is created by applying reverse traffic with the same properties as the forward

traffic for showing the possible effects of ACK-compression problem [6].

Required Buffer Size

XCP tries to minimize the buffer occupancy and not to drop any packets. First, we find

the maximum queue occupancy of bottleneck link by P. and N.P. XCP with O.P. and C.P.

when there are different number of long flows ranging from 2 to 800. Size of all buffers are

limited to rule-of-thumb bandwidth-delay product.

In Fig. 4.1(a), x-axis shows the number of long flows and y-axis shows the maximum

queue occupancy of bottleneck link, both in log scale. In Fig. 4.1(b), x-axis shows the

number of long flows and y-axis shows the average utilization of bottleneck link. X-axis is

in log scale. Y-axis is between [0-1] where one means 100% utilization. When the buffer

occupancy of P. XCP with O.P. and C.P. are compared, Fig. 4.1(a) shows that C.P. can

decrease the buffer requirement greatly, depending on the number of flows. As an example,
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Figure 4.1: (a) Maximum buffer occupancy and (b) bottleneck utilization with rule-of-
thumb buffer size. (c) Transient bottleneck utilization and (d) congestion window size of
Non-Paced XCP with original parameter set. (e) Transient bottleneck utilization and (f)
congestion window size of Paced XCP with original parameter set.

when there are 100 flows, the required buffer size is around 6.4MBytes according to the rule-

of-thumb, and around 638KBytes according to Appenzeller’s RTT×BW√
N

formula. As seen in
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Fig. 4.1(a), the maximum buffer occupancy of P. XCP with C.P. is only 23,360Bytes. The

maximum buffer occupancy decreases as the number of flows decrease.

In the Fig. 4.1(a), we see that rule-of-thumb buffer (6.4MBytes) size was not enough

for N.P. XCP when the number of flows is low. N.P. XCP becomes oscillatory and starts

losing many packets. Therefore N.P. XCP gives low average utilization when the number

of flows is low as seen in Fig. 4.1(b). The reason of this behavior is the burstiness of

XCP and ACK compression problem. XCP is a bursty protocol, because it may increase

window size in big steps, so it may send too many data packets back to back. The ACK

packets are compressed by bottleneck link along the data packets of reverse traffic. As the

arrival of ACK packets to the sender is delayed, ACK-starvation occurs and sender can not

send new data packets in this period, which may cause under-utilization of the bottleneck

link if the number of sources is low. Then, the receiver gets a burst of ACK packets

compressed at the end of a data burst and starts sending a burst data packets, which can

over-utilize the bottleneck link. Therefore, there is a big oscillation in the spare utilization

variable of Φ calculation. At the same time, queue size starts oscillating between a very

low and a high value due to high burstiness of input traffic. XCP’s efficiency controller uses

only the persistent (minimum) queue size without taking the maximum buffer occupancy

into account for calculating the feedback, so the queue size information in the efficiency

controller algorithm does not help stabilizing the system. Therefore, the calculated router

feedback information becomes oscillatory, which further increases the burstiness. Routers

require a buffer that is much larger than rule-of-thumb so that the buffer can handle the

big oscillations in the queue size.

In the simulations, the buffer limit is set to rule-of-thumb, which is not enough for

N.P. XCP when the number of flows is low. Therefore packet drops occur. Current XCP

implementation in ns-2 drops its window size to half and applies TCP Reno’s recovery

algorithm. This behaviour can interfere with XCP’s own window control algorithm and

further increase the oscillations. Figures 4.1(c),(d),(e),(f) show the transient bottleneck

link utilization and congestion window size of one of the P. and N.P. XCP flows with O.P.

when there are two flows (four flows including the reverse flows). As seen in Fig. 4.1(c),(d),
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utilization and congestion window size of N.P. XCP shows unstable behavior and causes

many packet drops and timeouts. Even when an unlimited buffer is provided, N.P. XCP

shows an oscillatory behavior. Using C.P. decreases the level of oscillations, but can not

solve it fully. On the other hand, as seen in Fig. 4.1(f), window size of P. XCP reaches its

fair-share in a short time and stays almost constant throughout the simulation.

As the number of flows increases, the oscillations and therefore the required buffer size

decreases, because the input traffic rate becomes smoother due to higher level of traffic

multiplexing.

Small-buffered Network Simulations

In Fig. 4.1(a), it is seen that maximum buffer occupancy values of P. XCP with C.P. is

very small. We set the buffer limit of bottleneck link to those maximum buffer occupancy

values of P. XCP with C.P. in simulations with corresponding number of flows and evaluate

the performance of other TCP variants and XCP with C.P..

In Fig. 4.2(a), all P. TCP variants achieve over 80% utilization when the buffer size

is small. P. XCP with C.P. gives almost constant utilization around the value of capacity

parameter 90%. Among the P. TCP variants, P. NewReno gives the second best utilization

that is marginally higher than P. HSTCP. P. Reno has the lowest utilization. The reason

for not achieving 100% utilization is synchronization of congestion window of flows. When

the total input rate exceeds the link capacity, queue starts dropping packets and many flows

lose packets due to uniform arrival of packets due to pacing, so many flows decrease their

window size, which brings synchronization of flows. Furthermore, many flows lose multiple

packets inside a congestion window. Reno is known to have low performance when there

are multiple losses inside a window, so its paced variant gives the lowest performance.

When there is synchronization, we can expect to get higher utilization with P. HSTCP

than P. NewReno especially when average window size is large. This is because, unlike

NewReno, which decreases its window to half, HSTCP decreases its window size to a value

higher than half size when window size is large. However, HSTCP increases its window size

at steps larger than one MSS per RTT when window size is large. As a result, P. HSTCP
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Figure 4.2: (a) Average bottleneck utilization with small buffers. (b) Transient bottleneck
utilization of Paced XCP with conservative parameter set and Paced TCP variants.
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may cause a heavier congestion and drop more packets than P. NewReno. Therefore, the

number of flows losing packets and getting synchronized is more than P. NewReno. Higher

level of synchronization among P. HSTCP flows causes lower utilization than P. NewReno.

Fig. 4.2(a) shows that N.P. TCP variants give low utilization unless there is a large

number of flows, due to high packet loss rate caused by their high burstiness and small-buffer

size of the bottleneck link. However, when there are many flows, the aggregated throughput

of flows becomes high enough to achieve high utilization. Furthermore, simulated buffer size

increases with the number of flows according to the maximum buffer occupancy of Paced

XCP with C.P. as shown in Fig. 4.1(a). When there are 800 flows, the simulated bottleneck

buffer size is 124,040Bytes. Average utilization of N.P. TCP variants is over 90% percent.

It is important to note that according to Appenzeller’s formula, the required buffer size is

only around 225KBytes that is close to the simulated buffer size, so our results on N.P.

TCP comply with Appenzeller’s results.

When we compare the average utilization of N.P. TCP variants, we see that HSTCP

gives the best performance. NewReno gives a marginally lower performance and Reno

gives the worst performance. Average window size of flows is small, so HSTCP’s congestion

control algorithm operates with almost the same window increase and decrease factors as

TCP. However, HSTCP gives a much better performance than Reno and a marginally better

performance than NewReno due to performance improvement of SACK in environments

with high loss rate.

When we check the transient utilization of first 40 seconds of P. TCP variants with 40

flows and P. XCP with 40 and 800 flows in Fig. 4.2(b1) and Fig. 4.2(b3), we see that P.

XCP with C.P. achieves its target utilization in a short time. P. HSTCP in Fig. 4.2(b2)

achieves the second fastest conversation time in terms of fully utilizing the link, because of

its fast window increase. P. NewReno in Fig. 4.2(b2) and P. Reno in Fig. 4.2(b3) give the

worst convergence time. P. TCP variants show a saw-tooth like transient utilization due to

high level of synchronization.

When transient utilization graphs of P. XCP with 40 and 800 flows are compared in

Fig. 4.2(b1) and (b3), we see that utilization of 800 flows simulation is almost constant in
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the first 15 seconds and then utilization starts to oscillate. In the first 15 seconds, window

size of each flow converges to its fair share. Then, small changes in the utilization cause all

flows to increase or decrease their window size around their fair share simultaneously. XCP

and TCP’s congestion window size is a real number. However, effective window size is an

integer number of MSS. Therefore, the flow speed changes in discrete steps. If the average

window size is small like in 800 flows simulation, synchronized change of congestion window

size of many flows causes a big oscillation in input traffic rate. This oscillatory behavior

seen when the average window size is small, is also shown in [16] and stated that buffer

is used for absorbing this oscillation. However, absorbing oscillations in the buffer is not

possible in small buffered networks, so target utilization is chosen less than 100% in order

to be sure that the highest rate of the oscillatory input traffic is less than link capacity as

in Fig. 4.2(b3).

4.2.5 Dumbbell Topology Simulations with Web-like Traffic

A web-like traffic is simulated by applying dynamic short flows and long FTP flows on a

dumbbell topology for showing the performance of pacing algorithms under a more realistic

traffic. Simulated link speeds are as given in the previous simulations. There are N nodes

for short flows and 40 nodes for long flows giving a total of N+40 nodes on each side of the

bottleneck link, where N is between [0-400]. RTT distribution of both long and short flows

ranges from 64ms to 100ms. Average RTT is 82ms. Bottleneck delay is 30ms. All sources

start at random times between [0-10]s. Long flows continue until the simulation ends. File

size of short flows is Pareto distributed with shape of 1.35 and average of 30 packets as

in [16]. After sending a file, a node stays OFF for an exponential distributed times with

average of 0.2s. A node reserved for short flows carries only one flow at a time. There is

two-way traffic by applying reverse traffic with same properties as the forward traffic. The

average file size of dynamic flows is small, so dynamic flows usually finish before reaching

a high window size and the total traffic injected by the dynamic flows is low. Simulation

duration is 50s and only data from [20-50]s is used in average utilization calculations.
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Figure 4.3: (a) Maximum queue occupancy of Paced XCP with conservative parameter set.
(b) Average bottleneck utilization with small buffers.
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First, we find the maximum queue occupancy of P. XCP with C.P., by setting the size of

buffers to rule-of-thumb and changing the number of short flows. As seen in the Fig. 4.3(a),

even when the number of dynamic flows is high, maximum buffer occupancy do not show

a big difference because of the low rate of traffic injection (less than 30% of bottleneck link

utilization) of short flows and decreased utilization of bottleneck link as seen in Fig. 4.3(b).

Lower bottleneck utilization decreases the maximum buffer occupancy due to decreased

probability of contention.

We simulate N.P. XCP with C.P. and other TCP variants by applying these buffer

occupancy values with the corresponding number of short flows. As seen in Fig. 4.3(b), P.

XCP gives lower utilization as the number of dynamic flows increase. It is mainly because of

the fairness control algorithm of XCP. XCP tries to fairly distribute the bandwidth among

all flows. However, the dynamic flows are short, so they usually finish before reaching

their fair-share. Their share becomes unused and the achievable utilization decreases as the

number of dynamic flows increases.

Dynamic arrival and departure of short flows decreases the synchronization level of flows.

Therefore, P. HSTCP gives higher utilization than P. NewReno at some points. Again,

P. Reno generally gives worse performance than P. NewReno and P. HSTCP. Average

utilization of P. TCP variants increases as the number of dynamic flows increase due to

decreases in the level of synchronization.

When we check the average utilization of N.P. TCP variants, we see that NewReno

and HSTCP have almost the same performance. Again, Reno gives the worst performance.

Utilization of N.P. TCP variants increase as the number of dynamic flows increase due to

aggregated bandwidth of long and short flows.

4.2.6 Parking Lot Topology Simulations

A parking lot topology with 3 middle links is used for fairness and utilization simulations.

Link capacities are as given in the previous simulations. Each middle link has 10ms propa-

gation delay. There are 10 long flows passing through all three middle links. Also there are
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Figure 4.4: Average link utilizations.

a set of 10 short flows passing through first middle link and another set of 10 short flows

passing through second middle link. Third middle link has only long flows. Therefore, there

are two bottlenecks at the same time. RTT distribution long flows (short flows) range from

64ms (24ms) to 100ms (60ms) with average RTT of 82ms (42ms), respectively. Two-way

traffic is created by applying reverse traffic with same properties as the forward traffic.

Simulation duration is 100s and only data from [40-100]s is used in average utilization

calculations.

First, we find the maximum queue occupancy of P. XCP with C.P., by setting the size of

buffers to rule-of-thumb. The maximum queue occupancy is found as 10,200Bytes. Then,

we simulate N.P. XCP with C.P. and other P. and N.P. TCP variants by applying this

buffer size to all middle links. Fig. 4.4 shows the average utilization of three middle links.

X-axis shows the middle link number. When we compare the utilization of P. XCP and P.

TCP variants on the first two links, we see that P. XCP gives the highest utilization. P.
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P. XCP P. Reno P. NewReno P. HSTCP
1 0.78 0.76 0.44

N.P. XCP N.P. Reno N.P. NewReno N.P. HSTCP
0.76 0.72 0.74 0.73

Table 4.1: Fairness index

NewReno is the second, P. HSTCP is the third and P. Reno is the last one. This result is

the same as the dumbbell topology simulations. However, results are different on the third

link, which shows the average utilization of long flows. P. XCP has the highest utilization,

which points to a good fairness among long and short flows. Long flows are not penalized

by high RTT or multiple bottlenecks. P. Reno has the second and P. NewReno has the

third highest utilization. P. HSTCP has a low utilization pointing to a high discrimination

against long flows with multiple bottlenecks. When we compare the average utilization of

N.P. TCP variants, we see that NewReno and HSTCP have a similar utilization and Reno

has the worst utilization at all links. N.P. XCP with C.P. has less than 0.5% utilization,

which is the lowest among all tested TCP and XCP variants, so it is hard to see utilization

of N.P. XCP in the figure.

Fairness of goodput among long and short flows is evaluated by using Jain’s fairness

index f =
(
∑i=n

i=1
xi)

2

n
∑i=n

i=1
x2

i

, where n is the number of flows and xi is the goodput of flow i

[40]. Table 4.1 shows that P. XCP has perfect fairness. P. Reno and P. NewReno have

similar fairness, which is lower than P. XCP. However, P. HSTCP has a low fairness. N.P.

TCP variants have similar fairness. Fairness value of N.P. XCP is meaningless, because it

achieved less than 0.5% utilization due to totally unstable behavior.

4.3 Rate-based XCP Pacing with Small Optical RAM

In Chapter 2 and 3, we evaluated the buffer size requirements for the proposed architecture

in the case of FDL buffering. In this section, we replace FDL buffering with optical RAM

and evaluate the optical RAM size requirements of our proposed architecture. We show that

proposed architecture has very low buffer requirements with optical RAM due to advantage
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Figure 4.5: Aggregate packet drop ratio as a function of optical RAM size.

of O(1) reading operation of optical RAM when compared with FDLs.

4.3.1 Evaluation and Results

NSFNET network is simulated by using a simulator developed on ns-2 [28]. Simulation

parameters are mainly the same as in Chapter 2 and 3. All links (including edge and

core links) apply optical packet switching. Edge nodes apply electronic buffering, but

core routers use only optical RAM for buffering. All switches employ output buffering

and cut-through bit-synchronized switching and buffering. It is assumed that there is a

backlogged traffic at edge buffers, so each edge node sends traffic to all other edge nodes at

the maximum possible rate controlled by XCP. The capacity of the data wavelength is set

to 1Gbps. XCP’s α, β and γ parameters are selected as 0.2, 0.056 and 0.05, respectively.

XCP control period of core routers and probe packet sending interval of edge routers is

50ms. 60% of the packets are 40Bytes and 40% of the packets are 1500Bytes. MSS is
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1500Bytes. Fig. 4.5 shows the ratio of the packets dropped in NSFNET topology vs. the

optical RAM size limit of output links of core routers by using our architecture and setting

the target wavelength utilization of XCP to 30% and 90%. It can be seen that low packet

drop ratio can be achieved with very small optical RAM buffering. If we want very low

packet drop ratio like 10−6, only around 4MSS (6Kbytes) and 7MSS (10.5Kbytes) optical

RAM per link may be enough for 30% and 90% utilization, respectively. On the other hand,

around 0.1% packet drop ratio may be enough for internet traffic. In this case, only around

2MSS (3Kbytes) and 4MSS (6Kbytes) optical RAM per link may be enough for 30% and

90% utilization in NSFNET, respectively.

4.4 Conclusions

TCP and XCP are well-known to behave bursty, so they have a low utilization in very

small buffered high bandwidth-delay networks. In the first part, we showed that even rule-

of-thumb sized buffers are not enough for XCP in some cases due to high burstiness of XCP.

We showed that XCP can be adapted to small buffered networks by applying pacing and

a careful selection of parameters. We compared P. XCP and different TCP variants and

showed that P. XCP is a strong candidate for achieving high performance in small buffered

networks.

A big disadvantage of XCP based algorithms is that they require deployment of XCP

capable senders, receivers and routers. On the other hand, it is possible to use P. TCP

algorithms by updating only TCP senders.

Even though paced sources minimize the burstiness of traffic they send into the network,

queues can change the intervals between the packets and make the traffic burstier in a

fashion similar to ACK-compression and increase the buffer requirements of bottleneck

link. Simulations on more realistic traffic models and bigger topologies are required for

better understanding in the buffer requirements of paced algorithms.

In the second part, we evaluated the packet drop ratio of a mesh OPS network using

small optical RAM buffering with our rate-based XCP pacing architecture. Simulation
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results show that only a few packet buffers per output may be enough for low packet drop

ratio and high utilization.
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Chapter 5

Node Pacing for Optical Packet

Switching

5.1 Introduction

In Chapter 2, we proposed an architecture for decreasing buffering requirements by using

XCP framework. However, implementation cost XCP framework can be high. Therefore, in

this chapter we propose a light-weight alternative architecture that does not require XCP

framework.

Ref. [8] proposes applying traffic shaping at edge nodes of OPS network for minimizing

traffic burstiness. It proposes a delay-based pacing algorithm that adaptively chooses packet

spacing according to input traffic class for achieving bounded delay requirements. Ref. [10]

proposes a RC traffic shaper for ATM networks that smooths the traffic by adjusting the

output rate based on the buffer occupancy that depends on the input traffic rate. Output

rate is linearly proportional to the shaping buffer occupancy. The problem of the proposed

algorithm is that it requires a large buffer for preventing cell loss. Large buffer brings higher

delay. Furthermore, peak cell input rate must be known. In order to solve these problems,

Ref. [11] proposes Interval Filter Shaping Algorithm (IFSA) that smooths cell inter-arrival

time with a low latency. IFSA makes use of a low pass filter and special scheduler for
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smoothing the traffic.

We propose an algorithm that can shape traffic at edge or core nodes by using the buffer

occupancy information like the RC traffic shaper. However, our design solves the problems

of RC traffic shaper, by using a piecewise linear output transfer rate control function and

making use of average input traffic rate information calculated inside the node. We show

that our pacing algorithm can considerably increase the achievable utilization of very small

optical RAM buffered optical core links or namely throughput of TCP flows using these

links.

5.2 Architecture

5.2.1 Traffic Shaper

The RC traffic shaper [10] calculates the cell output rate according to the linear equation

λo(t) =
Bc(t)
Bc

λimax (5.1)

where λo(t) is the output traffic rate, Bc(t) is the buffer occupancy, Bc is the buffer

capacity and λimax is the maximum input traffic rate. The algorithm sets the output traffic

rate equal to input traffic rate when buffer is full, in order to prevent packet drops. However

output traffic rate is limited by the link speed and if input traffic rate is higher than the

link speed, buffer may overflow and cause packet drops.

We propose using a piecewise linear transfer function instead of linear. Fig. 5.1(a)

shows the transfer function where Bt is buffer threshold, Bc is buffer capacity, Ss is initial

link speed and Sl is link capacity. Output rate in RC traffic shaper reaches to the input

rate only when the buffer is full. However, in our algorithm output rate reaches to the input

rate after a buffer threshold is reached. This provides a safety margin for decreasing buffer

overflows in case input traffic rate is higher link speed as there is still free space in the buffer.

However, this may not be enough for decreasing average buffer occupancy. When this fixed
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Figure 5.1: (a) Transfer function and (b) adaptive transfer function

transfer function is used, an average output traffic rate higher than Ss still requires a non-

zero average buffer occupancy that increases packet drop probability, especially in a very

small buffer network. For example, an average output traffic rate equal to link capacity

requires an average buffer occupancy of Bt. In order to solve this problem, we make use of

both buffer occupancy and average input traffic rate for calculating output traffic (pacing)

rate. We adaptively shift the x axis (buffer occupancy) of the transfer function according

to average arrival rate, so that pacing uses less buffer space. Fig. 5.1(b) shows the adaptive

transfer function where Sa is the average input traffic arrival rate and Bta is the new buffer

threshold after shifting the transfer function according to Sa. If Sa is smaller than Ss, Sa

is taken as Ss. Bta can be calculated by simply Bta = Bt
Sl−Sa

Sl
. This adaptive transfer

function allows output traffic rate being equal to average input traffic rate even when the

buffer occupancy is zero, so average buffer occupancy can be decreased.

5.2.2 Switch and Scheduler Architectures

Core nodes use an input buffering architecture with virtual output queuing (VOQ) schedul-

ing. The reason is that input buffered switch architecture has a speedup of 1, so it has
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smaller switching fabric size and cost when compared with output buffered and combined

input-output buffered switch architectures. However, a well-known problem of input buffer-

ing is head-of-line blocking, which limits the achievable utilization. We apply virtual output

queuing (VOQ) scheduling for minimizing this problem.

Proposed algorithm requires the output link buffer occupancy information that is nor-

mally zero for an input buffered switch as there is no buffer at the output links. Therefore,

effective buffer occupancy value of an output link is calculated by sum of virtual output

queues destined to this output link.

5.3 Evaluation

5.3.1 Simulation Settings

Proposed network architecture and algorithms are implemented over ns version 2.32 [28].

Abilene-inspired topology from Ref. [41] is used in simulations. The topology has a

total number of 869 nodes that are divided into three groups as:

• Center core nodes (C): 75 core nodes that are not connected to edge nodes;

• Middle core nodes (M): 106 core nodes that are connected to edge nodes;

• Edge nodes (E): 698 nodes that IP traffic enters or exits the network topology.

This topology is selected because it is possible have large number of flows multiplexing

at the core backbone links and high utilization due to ring architecture. Non-paced TCP

Reno and Paced TCP Reno are used as traffic sources. A total of 4581 TCP flows start

randomly and send traffic between randomly selected edge node pairs. Total simulation

duration is 20s. TCP data packet size is 1500Bytes.

There is a single data wavelength on links. Propagation delay of edge and core links are

0.1ms and 1ms, respectively. All links have 1Gbps capacity. Core node links are simulated

with an optical RAM input buffer size (Bc) of 50Kbits, 100Kbits or 2Mbits. Electronic
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Figure 5.2: Simulation results
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RAM input buffer size of edge nodes is 100Mbits (100ms). Bt is always selected as half of

the Bc. Ss is selected as 0.1Gbps and 0.01Gbps for core and edge nodes, respectively.

Different combinations of edge node pacing (E), middle core node pacing (M), center

core node pacing (C) and no node pacing are simulated with Non-paced TCP and Paced

TCP flows. Figures 5.2(a), 5.2(b) and 5.2(c) show the sorted utilization of backbone links

between 10 center core nodes at the very center of the network at the end of the simulation.

In the figures, input buffer size of links of core nodes are 50Kbits, 100Kbits and 2Mbits,

respectively. In all plots, utilizations are sorted independently from lowest to highest, so

there is not a one to one correspondence between link numbers of the plots.

When we check the simulation results in Fig. 5.2(a), we see that simulation results

of Paced TCP traffic are almost the same for different node pacing methods. The reason

is that Paced TCP traffic is already smooth enough, so extra node pacing does not bring

improvement when Paced TCP is used. The next group of lines show the utilization when

Non-paced TCP is used with Edge node pacing. Again we see that edge node pacing makes

the traffic smooth enough, so additional center and middle core pacing do not make a big

difference. Unlike TCP pacing, the edge node pacing paces the traffic without any knowl-

edge of RTT of flows, so it can not space the packets optimally. Therefore, its utilization is

a bit lower than TCP pacing. The next group of lines is center core pacing, and center core

+ middle core pacing methods where the latter has a bit higher utilization. They have a

lower utilization than edge pacing, because there are fewer number of core nodes than edge

nodes and core nodes have a much smaller buffer (2000 times smaller) than edge nodes that

is not enough to fully pace the traffic. The last plot is the simulation result of no pacing

that has the lowest utilization as expected. The figure shows that even when node pacing

is applied to only core nodes with very small buffers, it is possible to achieve a considerable

throughput increase when compared with no pacing case. If node pacing is applied to edge

nodes, achievable utilization can be almost doubled at low utilized links, without requiring

Paced TCP.

When we increase the core buffer size to 100Kbits in Fig. 5.2(b), we see that the

utilization gap becomes lower. However, there is still a considerable gain by core node
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pacing over no pacing case. When we increase the core buffer size to 2Mbits in Fig. 5.2(c),

we see that simulations give indistinguishable results that shows that 2Mbits buffer size is

enough to solve burstiness problem, so pacing does not make a difference.

5.4 Conclusions

In this chapter, we proposed a pacing algorithm at the edge or core backbone nodes in order

to increase the utilization efficiency of very small optical RAM buffered OPS networks.

It is a light-weight control, so it is easier and cheaper to implement than XCP based

control. Our simulation results show that our edge or core based node pacing algorithm

can considerably increase the achievable utilization of very small buffered optical core links

or namely throughput of TCP flows using these links.
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Chapter 6

Conclusions

In this thesis, we proposed methods for minimizing the buffer size of optical networks. In

Chapter 2, we proposed a new XCP protocol called Rate-based Paced XCP specially de-

signed for small buffered optical networks and showed that it has a very good performance.

We evaluated the packet drop rates with extensive simulations on a meshed network with

multiple-hop paths and showed how FDL requirements change with slot size, FDL gran-

ularity, scheduling and packet size distribution. Simulation results with meshed networks

showed that our architecture can provide much low packet loss ratio lower than poisson

traffic in core OPS networks with small FDL buffers. We showed that large packets and

small packets have different FDL requirements. Small packets require low granularity for

low packet drop rate, but large packets require high granularity for decreasing the number

of required FDL lines.

As a next step, in Chapter 3 we proposed new switch architectures specially designed

for Rate-based Paced XCP for further decreasing the buffer requirements. We compared

the buffering architectures input buffering with VOQ, and output buffering with void fill-

ing. We evaluated the packet drop rates depending on FDL granularity and packet size

distribution. We showed that input buffering requires comparable number of delay lines

as output buffering architectures at 30% utilization, which is typical for backbone links

of network operators, with pacing. Input buffering can be implemented by dividing the
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switching fabric into smaller switches instead of a single and large main switch, so input

switching may decrease costs when the cost of a large and single switch is higher.

In Chapter 4, first we evaluated the performance of paced transmission protocols and

compared the performance in small-buffered networks. We showed that even rule-of-thumb

sized buffers are not enough for XCP in some cases due to high burstiness of XCP. We

showed that XCP can be adapted to small buffered networks by applying pacing and a

careful selection of parameters. We compared P. XCP and different TCP variants and

showed that P. XCP is a strong candidate for achieving high performance in small buffered

networks. Then, we evaluated the optical RAM buffer size requirements for our proposed

architecture from Chapter 3. We showed that our architecture has very low buffer require-

ments with optical RAM due to advantage of O(1) reading operation of optical RAM.

In Chapter 5, we proposed a core pacing architecture that is very light-weight, easy to

implement and can operate without using XCP framework. We compared the buffering

architectures input buffering with VOQ, and output buffering with void filling. We evalu-

ated the packet drop rates depending on FDL granularity and packet size distribution. We

showed that input buffering requires comparable number of delay lines as output buffering

architectures at 30% utilization, which is typical for backbone links of network operators,

with pacing.

As a future work, we will consider using hybrid optical switch architectures like using

OPS and optical circuit switching at the same time. Circuit switching paradigm requires

no buffering inside the network as there is no multiplexing. Furthermore, a relatively slow

switching fabric can be used in the routers, so circuit switched architectures have much

lower cost than packet switched routers. However, circuit switched architectures have lower

utilization efficiency due to lack of multiplexing, especially on meshed networks. On the

other hand, packet switched architectures can achieve higher utilization due to high level of

multiplexing. However, buffer size requirement of packet switching is high for small buffered

optical networks. A hybrid packet/circuit switching architecture may relax the traffic and

decrease the buffer requirements and the router cost.
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